LV power air circuit breakers and switch-disconnectors

Compact Merlin Gerin 80 to 3200 A

Catalogue

2005

Schneider 3 Electric

Schneider Electric Industries SA
5, rue Nadar
92506 Rueil-Malmaison Cedex France
Tel : +33 (0)141298200
Fax : +33 (0)147518020
http://www.schneiderelectric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given iin this publication

This document has been printed on ecological paper

Compact NS 80 A

Compact NS 100 to 250 A

Compact NS 400 to 630 A

Compact NS 630 to 1600 A

Things

 will never be the same
New Compact NS,

 setting the standard, once again...The launch of Merlin Gerin Compact NS in 1994 revolutionised the world of moulded-case circuit breakers. Innovative, flexible and attractive, Compact NS rapidly set the standard in its field.
Today, Schneider Electric continues to innovate, extending the Compact NS range to high power ratings to offer a comprehensive and consistent range from 80 to 3200 A. Equipped with the new generation of Micrologic control units, Compact NS630b to 3200 circuit breakers integrate electrical measurement and analysis functions.
The communications option makes it possible to control power consumption, simplify maintenance and improve operating comfort.
A wide range of optimised auxiliaries and accessories is also available to meet the needs of even more applications.
Compact NS, simply a step ahead...

Compact NS, even more applications...

p. $x x$

Protection for:

- distribution systems supplied by transformers
- distribution systems supplied by engine generator sets
- long cables in IT and TN systems.

Installation :
■ in power switchboards

- on symmetrical rails (see page xx)

Special applications:
■ 1000 V distribution systems (see page xx)

- 400 Hz distribution systems (see page xx)

■ single-phase and two-phase systems (see page $x x$)
■ DC systems (see page xx)
All circuit breakers in the Compact NS range offer positive contact indication and are suitable for isolation in compliance with standards IEC 60947-1 and 2.

Protection of motor feeders

p. $x x$

When combined with a motor starter, Compact NS circuit breakers protect the cables and the starter against short-circuits. Equipped with an electronic trip unit, Compact NS circuit breakers also protect the cables, starter and motor against overloads
The exceptional current-limiting capacity of Compact NS circuit breakers automatically ensures type-2 coordination with the motor starter, in compliance with standard IEC 60947-4-1.

Protection of machines

p. $x x$

The different circuit-breaker versions in the Compact NS range are designed to meet the specific requirements of machines:

- compliance with international standards IEC 60947-2 and UL 508 / CSA 22-2 No. 14
- compliance with U.S. standard UL 489
- protection against overloads and short-circuits
- positive contact indication

■ installation in universal functional enclosures.

p. $x x$

Additional earth-leakage protection protects life and property against the risks of faulty insulation in the installation. Depending on the circuit breaker, earth-leakage protection is provided by:
■ adding a Vigi module to the circuit breaker

- using a specific Micrologic control unit
- using a Vigirex relay and separate toroids.

Source-changeover systems

p. xx (see also the "Source-changeover system" catalogue)

To ensure a continuous supply of power, some electrical installations are connected to two power sources:

- a normal source
- a replacement source on hand to supply the installation when the normal source is not available.
A mechanical and/or electrical interlocking system between two Interpact, Compact or Masterpact devices avoids all risk of parallel connection of the sources during switching.
A source-changeover system can be:
- manual with mechanical interlocking between the devices

■ remote controlled when an electrical interlocking function in added

- automatic when a controller is added to manage switching from one source to the other on the basis of external parameters.

UL 489 applications

Compact NS circuit breakers also meet the requirements of applications governed by standard UL 489 (see the corresponding catalogue).

... a solution for all installation configurations

The Compact NS range now covers all ratings from 80 to 3200 A:
■ Compact NS80 to 1600 A, fixed,
withdrawable, front or rear connections, manual or motorised operation

- Compact NS1600 to 3200 A, fixed, front connection, manual operation.

\mathbf{N} : standard breaking capacity

L: very high breaking capacity

The rating plates on the front panel of each device indicate the breaking capacity (N, H or L).

H: high breaking capacity
Total discrimination as standard

Discrimination between Compact NS circuit breakers is total for all types of faults (overloads, high or low shortcircuits) and whatever the type of trip unit used with the circuit breaker.

Compact NS100 to 630

Service breaking capacity
Ics at 415 V
L 150 kA
H 70 kA
N 45 kA
N 36 kA
N 25 kA
NS100 NS160 NS250 NS400 NS630

Compact NS630b to 1600

Service breaking capacity

N 70 kA

Ics at 415 V

Compact NS1600b to 3200

Service breaking capacity
Ics at 415 V
产
H 85 kA

NS1600b NS2000 N52500 N53200

Manual Compact NS250 with thermal-magnetic trip unit

Compact NS400 with electronic trip unit

Compact NS250 with motor mechanism

Plug-in Compact NS250 on base

Compact NS800 with manual control

Withdrawable Compact NS800 with electrical control

Compact circuit breakers make it possible to standardise switchboards for faster installation and fewer errors. All type L Compact circuit breakers (150 kA) are housed in the same case as the type N and type H models with the same ratings.
Compact circuit breakers up to 1600 A can be easily installed side-by-side
in a minimum amount of space.

5 frame sizes from 80 to 3200 A

630 to 1600 A

Many connection possibilities

Numerous connection possibilities, including front and rear connections for bare cables, cable lugs or bars, as well as plug-in or withdrawable versions, are available using accessories that can be rapidly added to the circuit breaker.

Connection parts for Compact NS

UPlug-in and withdrawable versions

Plug-in and withdrawable versions for:

- fast removal or insertion of the circuit breaker without exposure to live parts
■ standby outgoing circuits ready for wiring and circuit breaker installation at a later date
■ visible break possibility.

Busways

Compact NS circuit breakers up to 630 A can be installed in tap-off units of the Telemecanique Canalis range of busbar trunking.

Each Compact NS circuit breaker provides different types of protection, depending on the trip unit or control unit selected. Additional measurement and indication functions are available: - on Compact NS100 to 630, by adding an electrical auxiliary to the circuit breaker ■ on Compact NS630b to 3200, depending on the Micrologic control unit selected.

Compact NS100 to 630

On Compact NS100 to NS250 circuit breakers, the thermal-magnetic and electronic trip units are interchangeable and may be rapidly fitted to the circuit breakers. It is therefore easy to change the protection of a given circuit following a modification in an installation.
On Compact NS400 and NS630 circuit breakers, the electronic trip units are interchangeable, plug-in modules. The STR53UE trip unit offers a large number of protection settings:
standard:
■ specific indication of the different types of faults (overloads, short-circuits, etc.) optional:
■ built-in ammeter
■ earth-fault protection

- communication: transmission of all information concerning circuit-breaker operation to an electrical distribution control, monitoring and automation system via Digipact modules (see page xx)

Compact NS630b to 3200

Compact NS630b to 3200 circuit breakers are equipped with Micrologic control units that may added or replaced on site.
Micrologic 2.0 and 2.0 A control units offer standard protection. Micrologic 5.0 and 5.0 A control units offer selective protection that can be completed by earth-fault protection on Micrologic 6.0 A and earth-leakage protection on Micrologic 7.0 A control units.
The ammeter version of Micrologic control units provides current measurements. These units are equipped with a digital display and bargraph, used in conjunction with simple navigation buttons. Access to the desired parameters and settings is direct and navigation between screens is intuitive. Settings are greatly simplified by direct display on the screen.

Compact NS1600

Micrologic 2.0, 5.0

Micrologic 2.0 A,

A complete system of add-on modules for Compact NS:

Fewer catalogue numbers means immediate availability of parts for all solutions. Trip units, control units, auxiliaries and installation and connection accessories are the same for a given frame size and often for a number of frame sizes (e.g. auxiliary contacts, MN and MX voltage releases, etc.):

- Compact NS800 to NSA160
- Compact NS100 to NS250
- Compact NS400 to NS630
- Compact NS630b to 1600
- Compact 1600 b to 3200 .

[^0]
...modern products

Open communication ...

Equipped with a communications option, Compact NS circuit breakers fit perfectly in the Digipact installationmanagement system or other supervision systems. Via a PC or a PLC, the operator can:
display the status of each circuit breaker and its settings

- control the circuit breakers
- display faults
- access measurements supplied by the electronic control units.

and protection of the environment

Schneider Electric fully takes into account environmental requirements, starting right from the design stage of products through to the end of their service life: \square the materials used for Compact NS are not dangerous for the environment \square the production facilities are non-polluting in compliance with the IS 14001 standard
■ filtered breaking for the high ratings eliminates pollution in the switchboard

- the energy dissipated per pole is low, making energy losses insignificant - the materials are marked to facilitate sorting for recycling at the end of product service life.

Compact NS

Selection of a Compact NS circuit breaker depends on the application requiring protection (distribution systems, motor feeders, etc.) and on the prescribed installation conditions (see section "Installation, connection and auxiliaries").
Presentation 1
General characteristics 12
Protection of low-voltage distribution systems 14
Protection of distribution systems 16
Compact NB circuit breakers up to 600 A 16
Compact NS circuit breakers up to 630 A 18
Compact NS circuit breakers from 630 up to 3200 A 20
TM and STR trip units for Compact NS100 to 250 22
MP and STR trip units for Compact NS400 to 630 24
Micrologic control units for Compact NS630b to 3200 28
Micrologic A control units for Compact NS630b to 3200 30
Single-phase and two-phase systems 34
1000 V systems 36
Final distribution 38
Motor protection
Compact NS80H-MA 42
NS100 to 630 circuit breakers with MA magnetic trip units 43
NS100 to 250 circuit breakers with STR22ME electronic trip unit 44
NS400 to 630 circuit breakers with STR43ME electronic trip unit 44
Protection of industrial control panels 48
Circuit breaker Compact NSC100 49
UL508 / CSA 22-2 no. 14 marking 50
Trip units, auxiliaries, installation enclosures 51
Earth-leakage protection 52
Additional Vigi module (Vigicompact) for Compact NS100 to 630 53
Control and breaking 54
Control and disconnection
Compact NSA125NA and NSA160NA switch-disconnectors 56
Compact NSC100NA and NS100 to 630NA switch-disconnectors 58
Compact NS630b to 1600NA switch-disconnectors 60
Compact NS1600b to 3200NA switch-disconnectors 62
Source-changeover systems 62
Presentation 64
Manual source-changeover systems 65
Remote-controlled systems 66
Controllers 67
Installation, connection and accessories 68
Compact NB50 and 100 68, 70
Compact NB250 to 600 69, 72
Compact NS80H-MA, NSC100N 76, 78
Compact NSA160 77, 78
Compact NS100 to 630 (fixed version) 82, 84
Compact NS100 to 630 (withdrawable version) 83, 84
Compact NS630b to 1600 (fixed version) 102, 104
Compact NS630b to 1600 (withdrawable version) 103, 104
Compact NS1600b to 3200 (fixed version) 124
Test equipment 131
Installation recommandations 000
Dimensions, volumes 000
Electrical diagrams 000
Complementary technical information 000

Standardised characteristics indicated on the rating plate: rated insulation voltage
Uimp: rated impulse withstand voltage
Icu: ultimate breaking capacity, for various values of the rated operational voltage Ue
cat: utilisation category
Icw: rated short-time withstand current
lcs: service breaking capacity
$\rightarrow+$ suitable for isolation

Compliance with standards

Compact NS circuit breakers and auxiliaries comply with the following:

- international recommendations:
- IEC 60947-1 - general rules
- IEC 60947-2 - circuit breakers

ㅁ IEC 60947-3 - switches, disconnectors, switch-disconnectors, etc.

- IEC 60947-4 - contactors and motor starters
- IEC 60947-5.1 and following - control circuit devices and switching elements; automatic control components
■ European (EN 60947-1 and EN 60947-2) and the corresponding national standards:
- France NF
- Germany VDE
- U.K. BS
-Australia AS
- Italy CEI
\square the specifications of the marine classification companies (Veritas, Lloyd's
Register of Shipping, Det Norske Veritas, etc.)
■ French standard NF C 79-130 and the recommendations issued by the CNOMO organisation the protection of machine tools.
For U.S. UL, Canadian CSA, Mexican NOM and Japanese JIS standards, please consult us.

Pollution degree

Compact NS circuit breakers are certified for operation in pollution-degree III environments as defined by IEC standard 60947 (industrial environments).

Tropicalisation

Compact NS circuit breakers have successfully passed the tests prescribed by the following standards for extreme atmospheric conditions:
■ IEC 68-2-1 - dry cold ($-55^{\circ} \mathrm{C}$)

- IEC 68-2-2 - dry heat ($+85^{\circ} \mathrm{C}$)
- IEC 68-2-30 - damp heat (95% relative humidity at $55^{\circ} \mathrm{C}$)

■ IEC 68-2-52 - salt mist (severity level 2).

Environmental protection

Compact NS circuit breakers take into account important concerns for environmental protection. Most components are recyclable and the parts of Compact NS630b to NS3200 circuit breakers are marked as specified in applicable standards.

Ambient temperature

■ Compact NS circuit breakers may be used between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$.
For temperatures higher than $40^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{C}\right.$ for circuit breakers used to protect motor feeders), devices must be derated as indicated in the documentation.
$■$ Circuit-breakers should be put into service under normal ambient operatingtemperature conditions. Exceptionally, the circuit breaker may be put into service when the ambient temperature is between $-35^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$.

- The permissible storage-temperature range for Compact NS circuit breakers in the original packing is $-50^{\circ} \mathrm{C}(1)$ to $+85^{\circ} \mathrm{C}$.

Discrimination

As standard, the Compact NS range ensures discrimination between two circuit breakers positioned in series in an installation.

Positive contact indication

All Compact NS circuit breakers are suitable for isolation as defined in IEC standard 60947-2:

- the isolation position corresponds to the O (OFF) position
- the operating handle cannot indicate the "OFF" position unless the contacts are effectively open
$■$ padlocks may not be installed unless the contacts are open.
Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.
The isolation function is certified by tests guaranteeing
- the mechanical reliability of the position indication system
\square the absence of leakage currents
■ overvoltage withstand capacity between upstream and downstream connections.

Installation in class II switchboards

All Compact NS circuit breakers are class II front face devices. They may be installed through the door of class II switchboards (as per IEC standard 60664), without downgrading switchboard insulation. Installation requires no special operations, even when the circuit breaker is equipped with a rotary handle or a motor mechanism

Degree of protection

As per standards IEC 60529 (IP degree of protection) and EN 50102
(IK degree of protection against external mechanical impacts).
Bare circuit breaker with terminal shields

With toggle IP40 IK07

With direct rotary handle IP40 IK07
standard / VDE

Circuit breaker installed in a switchboard

With direct rotary handle IP40 IK07
standard / VDE
MCC IP435
CNOMO IP547

Functions and characteristics

Protection of low-voltage distribution systems
 Overview of solutions

Protection of distribution systems means protection of:
■ systems supplied by a transformer

- systems supplied by an engine
generator set
- long cables in IT and TN systems.

Power distribution

Special case of DC systems:
TM thermal-magnetic trip units for Compact NS100 to 250 and MP magnetic trip units for Compact NS400 and 630 may be used to protect DC distribution systems.

Accompanying trip units up to 630 A
page 22
Interchangeable thermal-magnetic and electronic trip units for NS100 to 630 and built-in thermal-magnetic trip unit for Compact NS125E

Micrologic electronic control units may be used on all Compact NS630b to 3200 circuit breakers and can be changed on site.

Power distribution (cont.)

\section*{Single-phase or two-phase distribution
 page 34
 | Rated current (A) | | 16... 100 | 125... 160 | 160... 250 |
| :---: | :---: | :---: | :---: | :---: |
| Compact | $\stackrel{\circ}{\circ}$ | NS100 1P/2P | NS160 1P/2P | NS250 1P |
| | | | | rmal-magnetic |
| Breaking capacity (kA rms) 220 V | | 1P 2P | 1P 2P | 1P |
| | N | 2585 | 2585 | 25 |
| | H | 40100 | 40100 | - |

1000 V distribution
page 36
Rated current (A)
Compact
60... 40

Compact	NS400 1000V	Breaking capacity: 10 kA rms at 1000 V
		STR23SP electronic trip unit specially designed for
1000 V applications		

Rated current (A)
Compact

$250 \ldots$	320	\ldots	$400 \ldots$	$500 \ldots$	$640 \ldots$
630	800	1000	1250	1600	
NS630b	NS800	NS1000	NS1250	NS1600	
			Breaking capacity:		
			25 kArms at 1000 V		

Micrologic control units are designed for 1000 V applications as well

Rated current (A)
Compact installation on a symmetrical rail
16... 160 NSA160
Breaking capacity
(kA rms) 380/415 V:
$\mathrm{E}: 16 \mathrm{kA}$
$\mathrm{N}: 30 \mathrm{kA}$
Built-in trip unit

Compact NB50N

Compact NB250N

Compact NB400N

Compact circuit breakers

Number of poles	manual	toggle direct or extended rotary handle
Control	electric	front connection rear connection
Connections	fixed	front connection rear connection
	withdrawable	
Mounting	backplate or rails	
symmetrical rail		

Electrical characteristics as per IEC 60947-2 and EN 60947-2

Rated current (A)	In	$50^{\circ} \mathrm{C}$
Rated insulation voltage (V)	Ui	
Rated impulse withstand voltage (kV)	Uimp	
Rated operational voltage (V)	Ue	$\begin{aligned} & \text { AC } 50 / 60 \mathrm{~Hz} \\ & \text { DC } \end{aligned}$
Type of circuit breaker		
ultimate breaking capacity (kA rms)	Icu	$\begin{array}{ll} \hline \text { AC 50/60 Hz } & 220 / 240 \mathrm{~V} \\ & 380 \mathrm{~V} \\ & 415 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 660 / 690 \mathrm{~V} \end{array}$
		DC $250 \mathrm{~V}(1 \mathrm{P})$ $500 \mathrm{~V}(2 \mathrm{P}$ in series $)$
Service breaking capacity	Ics	\% Icu
Suitability for isolation		
Utilisation category		
Endurance (C-O cycles)	mechanical electrical	440 V - In
Electrical characteristics as per Nema AB1		
Breaking capacity (kA)		$\begin{aligned} & 240 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$

Protection

Trip units	thermal-magnetic
Overload protection current setting (A)	Ir \quadat $50^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$
Instantaneous short-circuit protection current setting (x Ir)	Im
Indication and control auxiliaries	
Indication contacts	
Voltage releases	MX shunt release MN undervoltage release
Remote communication by bus	
Communicating auxiliary contacts	
Installation	
Accessories	terminal extensions and spraders terminal shields and phase barriers escutcheons plate for symmetrical rail
Dimensions (mm)	W $\times \mathrm{H} \times \mathrm{D}$
Weight (kg)	
Source changeover system	
Manual source changeover systems	

Compact NS250H

Compact NS630L
(1) $2 P$ in $3 P$ case for type N only
(2) specific trip units are available for operational
voltages $>525 \mathrm{~V}$
(3) operational voltage $\leqslant 500 \mathrm{~V}$.

Compact circuit breakers

Number of poles			
Control			
		toggle direct	
or extended rotary handle			

Source changeover system (see section on source changeover systems)
Manual, remote-controlled and automatic source changeover systems

Functions and characteristics

Protection of distribution systems Compact NS circuit breakers from 630 up to 3200 A

Compact NS800H

Compact circuit breakers

Pollution degree
Electrical characteristics as per Nema AB1
Breaking capacity (kA)
240 V
480 V
600 V

Protection and measurements

Interchangeable control units

Overload protection	long time \quad Ir (ln x ...)
Short-circuit protection	$\begin{aligned} & \hline \text { short time Isd (Ir x } \ldots) \\ & \text { instantaneous li }(\ln \times \ldots) \end{aligned}$
Earth-fault protection	$\lg (\ln \times \ldots)$
Residual current protection	$1 \Delta n$
Zone selective interlocking	ZSI
Protection of the fourth pole	
Current measurements	
Additional indication and control auxiliaries	
Indication contacts	
Voltage releases	MX shunt release MN undervoltage release
Remote communication by bus	
Device-status indication	
Device remote operation (1)	
Transmission of settings	
Indication and identification of protection devices a	nd alarms
Transmission of measured current values	
Installation	
Accessories	terminal extensions and spreaders terminal shields and phase barriers escutcheons
Dimensions fixed devices, front connections (mm)	3P
W $\times \mathrm{H} \times \mathrm{D}$	4P
Weight fixed devices, front connections (kg)	3 P 4 P

Source changeover system (see section on source changeover systems)
Manual, remote-controlled and automatic source changeover systems

TM and STR trip units for Compact NS100 to 250

Compact NS100 to 250 circuit breakers, types N, H and L, may be equipped with either a TM thermal-magnetic trip unit or an STR22 electronic trip unit. A mechanical mismatch-protection system avoids breaker and trip unit mismatches.

TM thermal-magnetic trip units

1 overload protection threshold
2 short-circuit protection pick-up

Protection

The protection functions may be set using the adjustment dials.
Overload protection
Thermal protection with an adjustable threshold.
Short-circuit protection
Magnetic protection with a fixed or adjustable pick-up, depending on the rating.

Protection of the fourth pole

On four-pole circuit breakers, the trip units can be of the,
4P 3d type (neutral unprotected),
$4 \mathrm{P} 3 \mathrm{~d}+\mathrm{Nr}$ type (neutral protection at 0.5 In) or 4P 4d type (neutral protection at In).

STR22 electronic trip units

1 long-time current setting (overload protection) long-time tripping delay
short-time pick-up (short-circuit protection)
short-time tripping delay
instantaneous pick-up (short-circuit protection)
test connector
7 percent load indication

Protection of the fourth pole

Protection

The protection functions may be set using the adjustment dials.

Overload protection

True rms long-time protection with an adjustable threshold.

Short-circuit protection

Short-time and instantaneous protection:
■ short-time protection with an adjustable pick-up and fixed tripping delay; - instantaneous protection with fixed pick-up.

Protection of the fourth pole

On four-pole circuit breakers, neutral protection is set using a three-position switch to 4P 3d (neutral unprotected), 4P 3d + N/2 (neutral protection at 0.5 In) or 4 P 4 d (neutral protection at In).

Indications

A LED on the front indicates the percent load:

- ON - load is > 90\% of Ir setting

■ flashing - load is > 105\% of Ir setting.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation after installing the trip unit or accessories.

STR electronic tri	its	STR22SE					STR22GE			
Ratings (A)	In 20 to $70{ }^{\circ} \mathrm{C}\left(^{*}\right)$	40	80	100	160	250(*)	40	100	160	250 ${ }^{*}$)
Circuit breaker	Compact NS100 N/H/L Compact NS160 N/H/L Compact NS250 N/H/L		- \square \square	■	-	-		■ \square \square	-	- - \square
Overload protection (Long Time)										
Current setting	$\mathbf{I r}=\ln \times \ldots$		ttings					ttings		
Time delay (s) (min....max.)	$\begin{aligned} & \text { at } 1.5 \times \mathrm{lr} \\ & \text { at } 6 \times \mathrm{lr} \\ & \text { at } 7.2 \times \mathrm{lr} \end{aligned}$	$\begin{aligned} & 90 . . \\ & 5 \ldots 7 \\ & 3.2 . \\ & \hline \end{aligned}$								
Short-circuit protection (Short Time)										
Pick-up (A)	$\operatorname{lm}=\operatorname{lr} \times \ldots$	2...					2...			
Accuracy ± 15 \%		8 se	ings				8 s	ings		
Time delay (ms)		fixe					fixe			
	max. resettable time max. break time	$\leqslant 40$					$\leqslant 40$			
	temps total de coupure	$\leqslant 60$					$\leqslant 60$			
Protection contre les courts-circuits (Instantaneous)										
Pick-up (A)	li	fixed $\geqslant 11 \times \ln$					fixed $\geqslant 11 \mathrm{x} \ln$			
Protection of the fourth pole										
Neutral unprotected	4P 3d	no protection					-			
Neutral protection at 0.5 In	4P 3d + N/2	$0.5 \times \mathrm{lr}$					-			
Neutral protection at In	4P 4d	1 x Ir					-			

(*) If the STR22SE and STR22GE 250 A trip units are used in high-temperature environments, the setting must take into account the thermal limitations of the * circuit breaker. The overload protection setting may not exceed 0.95 at $60^{\circ} \mathrm{C}$ or 0.9 at $70^{\circ} \mathrm{C}$.

Setting example

What is the overload-protection threshold of a
Compact NS250 circuit breaker equipped with an
STR22SE 160 A trip unit set to $\mathrm{Io}=0.5$ and $\mathrm{Ir}=0.8$?

Answer:

$\ln \times \mathrm{lo} \times \mathrm{Ir}=160 \times 0.5 \times 0.8=64 \mathrm{~A}$.

Protection of distribution systems MP and STR trip units for Compact NS400 to 630

Compact NS400 to 630 circuit breakers, types N, H and L, 3-pole and 4-pole, may be equipped with any of the STR23SE, STR23SV, STR53UE and STR53SV electronic trip units.
The STR53UE and STR53SV trip units offer a wider range of settings and the STR53UE offers a number of optional protection, measurement and communications functions. For DC applications, the Compact NS400H and 630 H circuit breakers are equipped with a built-in MP magnetic trip unit.

Selection of the trip unit depends on the type of distribution system protected and the operational voltage of the circuit breaker.
Protection for all types of circuits, from 60 to 630 A, is possible with only four tripunit catalogue numbers, whatever the circuit-breaker operational voltage:
■ U $\leqslant 525 \mathrm{~V}$: STR23SE or STR53UE
■ U > 525 V: STR23SV or STR53SV.
Trip units do not have a predefined rating. The tripping threshold depends on the circuit breaker rating and the LT (long time) current setting.
For example, for an STR23SE trip unit set to the maximum value, the tripping threshold is:

- 250 A, when installed on a Compact NS400 250 A
$\square 630$ A, when installed on a Compact NS630.

STR23SE ($U \leqslant 525 \mathrm{~V}$) and STR23SV ($\mathrm{U}>525 \mathrm{~V}$) electronic trip units

Protection

The protection functions may be set using the adjustment dials.

Overload protection

Long-time protection with an adjustable threshold and fixed tripping delay:
■ lo base setting (6 -position dial from 0.5 to 1)
■ Ir fine adjustment (8-position dial from 0.8 to 1).

Short-circuit protection

Short-time and instantaneous protection:
■ short-time protection with an adjustable pick-up and fixed tripping delay

- instantaneous protection with fixed pick-up.

Protection of the fourth pole

On four-pole circuit breakers, neutral protection is set using a three-position switch to 4P 3d (neutral unprotected), 4P 3d + Nr (neutral protection at 0.5 In) or 4P 4d (neutral protection at In).

Indications

A LED on the front indicates the percent load:

- ON - load is $>90 \%$ of Ir setting

■ flashing - load is > 105\% of Ir setting.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation after installing the trip unit or accessories.

1 long-time current setting (overload protection)
long-time tripping delay
short-time pick-up (short-circuit protection)
short-time tripping delay
instantaneous pick-up (short-circuit protection)
optional earth-fault pick-up
7 optional earth-fault tripping delay
8 test connector
9 battery and lamp test pushbutton

Earth-fault protection (T) (see the "Options for

 the STR53UE electronic trip unit" section on the following pages).With the earth-fault option (T) on the STR53UE electronic trip unit, an external neutral current transformer can be installed (situation for a threepole circuit breaker in a distribution system with a neutral). Available ratings of external neutral CTs: 150, 250, 400, 630 A.

STR53UE ($\mathrm{U} \leqslant 525 \mathrm{~V}$) and STR53SV $(\mathrm{U}>525 \mathrm{~V})$ electronic trip units

Protection

The protection functions may be set using the adjustment dials.

Overload protection

Long-time protection with adjustable threshold and tripping delay:
$■$ lo base setting (6-position dial from 0.5 to 1)
\square Ir fine adjustment (8-position dial from 0.8 to 1).

Short-circuit protection

Short-time and instantaneous protection:
\square short-time protection with adjustable pick-up and tripping delay, with or without constant l+t
\square instantaneous protection with adjustable pick-up.

Protection of the fourth pole

On four-pole circuit breakers, neutral protection is set using a three-position switch to 4P 3d (neutral unprotected), 4P 3d + Nr (neutral protection at 0.5 In) or 4P 4d (neutral protection at In).

Overload LED (\% Ir)

A LED on the front indicates the percent load:

- when ON, the load is $>90 \%$ of Ir setting

■ when flashing, the load is > 105\% of Ir setting.

Fault indications

A LED signals the type of fault:
■ overload (long-time protection) or abnormal component temperature (> Ir)

- short-circuit (short-time protection) or instantaneous (> Isd)

■ earth fault (if earth-fault protection option installed) (> Ig)

- microprocessor malfunction:
a both ($>\mathrm{Ig}$) and ($>$ Isd) LEDs ON
$\square(>\lg)$ LED ON (if earth-fault protection option (T) installed).
Battery powered. Spare batteries are supplied in an adapter box. The LED indicating the type of fault goes OFF after approximately ten minutes to conserve battery power. The information is however stored in memory and the LED can be turned back ON by pressing the battery/LED test pushbutton. The LED automatically goes OFF and the memory is cleared when the circuit breaker is reset.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation after installing the trip unit or accessories. The test pushbutton tests the battery and the (\% lr), (> Ir$),(>\mid \mathrm{Isd})$ and (> $\lg)$ LEDs.

Self monitoring

The circuit breaker trips if a microprocessor fault or an abnormal temperature is detected.

Options

Four options are available:
■ earth-fault protection T

- ammeter I

■ zone selective interlocking ZSI
■ communications option COM.

Trip units		STR23SE ($U \leqslant 525 \mathrm{~V}$) STR23SV ($\mathrm{U}>525 \mathrm{~V}$)			STR53UE ($U \leqslant 525 \mathrm{~V}$) STR53SV ($U>525 \mathrm{~V}$)						
Ratings (A)	In 20 to $70{ }^{\circ} \mathrm{C}{ }^{(1)}$	150250	400	630	150	250	400	630			
Circuit breaker	Compact NS400 N/H/L Compact NS630 N/H/L			-		$■$		\square			
Overload protection Current setting	$\boldsymbol{g r} \mathbf{t r}=\ln \mathrm{x} \ldots$	$\begin{array}{\|l} 0.4 \ldots 1 \\ \text { adjustable } 48 \text { settings } \end{array}$			0.4... 1 adjustable 48 settings						
Time delay (s) (min....max.)	at $1.5 \times \mathrm{lr}$ at $6 \times \mathrm{Ir}$ at 7.2 Ir	$\begin{aligned} & 90 \ldots 180 \\ & 5 \ldots . .7 .5 \\ & 3.2 . .5 .0 \end{aligned}$			$8 \ldots . .15$ $34 \ldots . .50$ $0.4 \ldots 0.5$ $1.5 \ldots 2$ $0.2 \ldots 0 . . .74$ $1 \ldots .1 .4$			$\begin{aligned} & 69 \ldots . .100 \\ & 3 \ldots .4 \\ & 2 \ldots . .2 .8 \end{aligned}$	$\begin{aligned} & 138 \ldots 200 \\ & 6 \ldots 8 \\ & 4 \ldots 5.5 \end{aligned}$	$\begin{aligned} & \hline 277 \ldots . .400 \\ & 12 \ldots .16 \\ & 8.2 \ldots . .11 \end{aligned}$	
Short-circuit protecti Pick-up (A) accuracy ± 15 \%	Isd = Ir X ...	\|c	$2 \ldots . .10$ adjustable 8 settings			$\begin{gathered} 1.5 . . .10 \\ \text { adjustable } 8 \text { settings } \end{gathered}$					
Time delay (ms)	max. resettable time	$\begin{array}{\|l\|l\|} \hline \text { fixed } \\ \leqslant 40 \\ \hline \end{array}$			$\begin{aligned} & \text { adjustable, } 4 \text { settings + constant "l2t" option } \\ & \leqslant 15 \leqslant 60 \leqslant 140 \leqslant 230 \\ & \hline \end{aligned}$						
Short-circuit protecti Pick-up (A)	instantaneous)	$\begin{aligned} & 11 \\ & \text { fixed } \end{aligned}$			$1.5 . . .11$ adjustable 8 settings						
Protection of the fourth pole											
Neutral unprotected	4P 3d	no protection			no protection						
Neutral protection at 0.5 In	4P 3d + Nr	$0.5 \times \mathrm{Ir}$			$0.5 \times \mathrm{Ir}$						
Neutral protection at In	4P 4d	$1 \times \mathrm{lr}$			$1 \times \mathrm{lr}$						
Options											
Indication of fault type		-			- (standard)						
Zone selective interlocking	ZSI	-			$\square^{(2)}$						
Communications	COM	-			$\square^{(2)}$						
Built-in ammeter	1	-			$\square^{(2)}$						
Earth-fault protection	T	-			$\square{ }^{(2)}$						

(1) If the trip units are used in high-temperature environments, the setting must take into account the thermal limitations of the circuit breaker. The overload protection setting may not exceed 0.95 at $60^{\circ} \mathrm{C}$ or 0.9 at $70^{\circ} \mathrm{C}$ for the Compact NS 400 , and 0.95 at $50^{\circ} \mathrm{C}, 0.9$ at $60^{\circ} \mathrm{C}$ or 0.85 at $70^{\circ} \mathrm{C}$ for the Compact NS630. (2) This option is not available for the STR53SV trip unit.

Setting example

What is the overload-protection threshold of a Compact NS400 circuit breaker equipped with an STR23SE (or STR23SV) trip unit set to $\mathrm{Io}=0.5$ and $\mathrm{Ir}=0.8$?

Answer.

In \times lo $\times \operatorname{Ir}=400 \times 0.5 \times 0.8=160 \mathrm{~A}$.
The identical trip unit, with identical settings but installed on a Compact NS630 circuit breaker, will have an overload-protection threshold of:
$630 \times 0.5 \times 0.8=250 \mathrm{~A}$.

```
Possible
combinations:
\squareI
■T
|l+T
■I+COM
■I+T+COM
■ ZSI
■ ZSI + I
■ ZSI + T
⿴囗SI + I + T
■ZSI +I + COM
_ ZSI + I + T + COM
```


Options for the STR53UE electronic trip unit

Earth-fault protection (T)

Type		Residual
Pick-up Accuracy $\pm 15 \%$	$\mathbf{I g}=\ln \times \ldots$	0.2 to 1 adjustable, 8 settings
Time delay		adjustable, 4 settings "constant $1+\mathrm{t} "$ function
	max. resettable time	$140 \quad 230 \quad 350$
	max. break time	$\leqslant 140 \leqslant 230 \leqslant 350 \leqslant 500$

Ammeter (I)

A digital display continuously indicates the current of the phase with the greatest load. The value of each current (I1, I2, I3, Ineutral) may be successively displayed by pressing a scroll button.
LEDs indicate the phase for which the current is displayed.

Ammeter display limits:

- minimum current $\geqslant 0.2 \times \mathrm{In}$. Lower currents are not displayed

■ maximum current $\leqslant 10 \times \ln$.

Zone selective interlocking (ZSI)

A number of circuit breakers are interconnected one after another by a pilot wire. In the event of a short-time or earth fault:
\square if a given STR53UE trip unit detects the fault, it informs the upstream circuit breaker, which applies the set time delay
■ if the STR53UE trip unit does not detect the fault, the upstream circuit breaker trips after its shortest time delay.
In this manner, the fault is cleared rapidly by the nearest circuit breaker.
The thermal stresses on the circuits are minimised and time discrimination is maintained throughout the installation.
The STR53UE trip unit can handle only the downstream end of a zone selective interlocking function. Consequently, the ZSI option cannot be implemented between two Compact NS circuit breakers.

Opto-electronic outputs

Using opto-transistors, these outputs ensure total isolation between the internal circuits of the trip unit and the circuits wired by the user.

Communications option (COM)

This option transmits data to Digipact distribution monitoring and control modules.
Transmitted data:
\square settings
■ phase and neutral currents (rms values)

- highest current of the three phases
- overload-condition alarm

■ cause of tripping (overload, short-circuit, etc.).

MP DC trip units

Magnetic trip units for Compact NS400/630 three-pole, type H circuit breakers. These trip units are specifically designed to protect DC distribution systems.
They are not interchangeable. The circuit breaker and trip unit are supplied fully assembled.

Built-in trip units		MP1	MP2	MP3
Circuit breaker	Compact NS400H Compact NS630H			
Short-circuit protection (magnetic)				
Pick-up (A)	Im	adjustable $800 . . .1600$	$\begin{aligned} & \text { adjustable } \\ & 1250 . . .2500 \end{aligned}$	adjustable $\text { 2000... } 4000$

Protection of distribution systems
 Micrologic control units
 for Compact NS630b to 3200

Micrologic 2.0 and 5.0 control units protect power circuits. Micrologic 5.0 offers time discrimination for short-circuits as well.

1 long-time current setting and tripping delay
2 overload signal (LED)
3 short-time pick-up and tripping delay
4 instantaneous pick-up
5 fixing screw for long-time rating plug
6 test connector

Note.

Micrologic control units that do not include measurement
functions are equipped with a transparent lead-seal cover as standard.

Protection settings

Protection thresholds and delays are set using the adjustment dials.
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.

Short-circuit protection

Short-time (rms) and instantaneous protection.
Selection of $\mathrm{I}^{2 t}$ type (ON or OFF) for short-time delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \ln (4 P 3 d+N / 2)$ or neutral protection at $\ln (4 \mathrm{P} 4 \mathrm{~d})$.

Protection of distribution systems
 Micrologic A control units
 for Compact NS630b to 3200 (cont.)

Micrologic A control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earthleakage protection.

1 long-time current setting and tripping delay
2 overload signal (LED)
3 short-time pick-up and tripping delay
4 instantaneous pick-up
5 earth-leakage or earth-fault pick-up and tripping delay
6 earth-leakage or earth-fault test button
7 long-time rating plug screw
8 test connector
9 lamp test, reset and battery test
10 indication of tripping cause
11 digital display
12 three-phase bargraph and ammeter
13 navigation buttons

Protection settings

Protection thresholds and delays are set using the adjustment dials.
The selected values are momentarily displayed on the screen, in amperes and in seconds.
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.

Short-circuit protection

Short-time (rms) and instantaneous protection.
Selection of $I^{2 t}$ type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of $\mathrm{I}^{2} \mathrm{t}$ type (ON or OFF) for delay.
Residual earth-leakage protection (Vigi).
Operation without an external power supply
Ω Protected against nuisance tripping.
\bumpeq DC-component withstand class A up to 10 A .

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \ln (4 P 3 d+N / 2)$, neutral protection at \ln (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

"Ammeter" measurements

Micrologic A control units measure the true (rms) value of currents.
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{g}, I_{\Delta n}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents $<20 \%$ In.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" measurements
- tripping causes
- maximeter reset.

[^1]

Note.
All current-based protection functions require no auxiliary source.
The reset button resets alarms, maximeter and stored

Accessories for Micrologic control units

External sensor (CT)

External sensor for source ground return protection

External sensors

External sensor for earth-fault protection

The sensor is used with 3P circuit breakers and the Micrologic 6.0 A control unit. It is installed on the neutral conductor for residual type earth-fault protection.
The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:
■ NS630b to NS1600-400/1600 CT
■ NS1600b to NS2000-400/2000 CT

- NS2000 to NS3200-1000/3200 CT.

Rectangular sensor for earth-leakage protection

The sensor is installed around the busbars (phases + neutral) to detect the zerophase sequence current required for the earth-leakage protection.
Rectangular sensors are available in two sizes.
Inside dimensions (mm)
■ 280×115 up to 1600 A

- 470×160 up to 3200 A.

External sensor for source ground return protection
The sensor is installed around the connection of the transformer neutral point to earth and connects to the Micrologic 6.0 control unit to provide the source ground return (SGR) protection.

Voltage measurement inputs

Voltage measurement inputs are required for earth-leakage protection. As standard, the Micrologic 7.0 control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 100 and 690 V AC. On request, it is possible to replace the internal voltage measurement inputs by an external connector which enables the control unit to draw power directly from the distribution system upstream of the circuit breaker.

Long-time rating plug

Four interchangeable plugs may be used to limit the long-time setting range for higher accuracy.
As standard, control units are equipped with the 0.4 to 1 plug.

Setting ranges

Standard	$\operatorname{Ir}=\ln x \ldots$	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98

Low-setting option $\operatorname{Ir}=\ln \times \ldots 0.4$	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.8

High-setting option $\operatorname{Ir}=\operatorname{In} \times \ldots 0.80$	0.82	0.85	0.88	0.90	0.92	0.95	0.98	1

Off plug
no long-time protection

External power-supply module

Used in conjunction with the Micrologic A control units, this module maintains three functions when the circuit breaker is OFF or the current is less than 20% In:

- display of measurements
- screen backlighting
- operation of maximeters.

Characteristics:
■ power supply: 24 to 240 V AC / DC (+10\% - 15\%)
■ output voltage: 24 V DC.

Lead-seal cover for Micrologic A

Spare parts for Micrologic control units

Lead-seal cover for Micrologic A

A transparent, lead-seal cover controls access to the adjustment dials.
When the cover is closed, it is still possible to access:

- the test connector
- the test button for the earth-fault and earth-leakage protection function.

[^2]
Functions and characteristics

Protection of distribution systems
 Single-phase and two-phase
 systems

Compact NS160H single pole

Compact NS100N two poles

Compact circuit breakers

Compact NS400 1000 V

Compact NS800 1000 V

Compact circuit breakers

These are incoming circuit breakers, specially designed to operate upstream of Multi 9 modular circuit breakers.
Features include:

- reinforced breaking capacity at 380/415 V,
by cascading up to 25 kA
- easy installation in Pragma and Prisma G enclosures:
- standard 45 mm front cut-out
- circuit breaker clips onto a symmetrical rail - reduced depth (82.5 mm).

A switch-disconnector version is also available (NSA125NA and NSA160NA).

Compact NSA160

Compact circuit breakers				NSA160			
Number of poles				3, 4			
Control	manual - toggle direct or extended rotary handle electric						
Connections	fixed	Front connection Rear connection		-			
	withdrawable	Front connection Rear connection					
Mounting on symmetrical rail				\square			
Front-panel cut-out				height 45 mm			
Electrical characteristics as per IEC 60947-2							
Rated current (A)	In $\quad 40^{\circ} \mathrm{C}$			160			
Rated insulation voltage (V)	Ui			500			
Rated impulse withstand volt. (kV)	Uimp			8			
Rated operational voltage (V)	Ue	$\text { AC } 50 / 60 \mathrm{~Hz}$DC		$\begin{aligned} & \hline 500 \\ & 250 \\ & \hline \end{aligned}$			
Type of circuit breaker				E N			
Ultimate breaking capacity (kA rms)	Icu $A C$ $50 / 60$ Hz DC	$220 / 240 \mathrm{~V}$			$\begin{array}{ll} 25 & 50 \\ 16 & 30 \end{array}$		
		$\begin{aligned} & 380 / 415 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$			$10 \quad 15$		
		125 V		10			
		250 V (2P)		$5 \quad 10$			
Service breaking capacity Ics \% Icu				50\%			
Utilisation category				A			
Suitability for isolation				\square			
Endurance (C-O cycles)	mechanical electrical (In - 440 V)			100005000			
Protection							
Built-in thermal-magnetic trip unit							
Ratings In	$\begin{array}{llll}16 & 25 & 32 & 40\end{array}$		50		100	125	160
Thermal overload protection Ir	fixed current setting						
Magnetic short-circuit protection Im	fixed pick-up		1000	01000125012501250			
Additional earth-fault protection	add-on Vigi module combination with Vigirex relay						
Indication and control auxiliaries							
Indication contacts				$1 \mathrm{OF}+1$ SD			
Voltage releases				MN or MX			
Installation and connections							
Connections Accessories	terminals			1.5 to $70 \mathrm{~mm}^{2}$ cables			
	terminal shields depth adjuster						
Dimensions (mm)$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$	Compact	3-poles		$90 \times 120 \times 82.5$			
				$120 \times 120 \times 82.5$			
	Vigicompact	3-poles		$210 \times 120 \times 82.5$			
				$240 \times 120 \times 82.5$			
Weight (kg)	Compact	3-poles		1.1			
		4-poles		1.4			
	Vigicompact	3 -poles		2.6			
		4 -poles		3.1			
Source changeover system							
Interlocking systems				-			

Vigicompact NSA

Vigi earth-fault protection module
The Vigi earth-fault protection module may be installed to the right of the circuit breaker. Connections with the circuit breaker are possible to the top or bottom of the Vigi module (two versions). The connection is supplied with the Vigi module.

Characteristics

Number of poles	3, 4
Sensitivity (A)	$0.03 / 0.3$ / $1 / 3$
Time delay intentional (ms)	$0 \quad 60$ (1) 150 (1)
max. break time	$<40<140<150$
Rated voltage (V) $50 / 60 \mathrm{~Hz}$	200 to 440 V
Reset	pushbutton
Test	pushbutton
Protection against nuisance tripping	\square
DC-component withstand	class A
(1) If the sensitivity is set to 30 mA , there is no time delay, whatever the time-delay setting	

Auxiliaries and accessories

Available auxiliaries include:

- 1 ON/OFF indication contact (OF)
$\square 1$ trip-indication contact (SD)
$\square 1$ voltage release (MN undervoltage release or MX shunt trip)
- 1 extended rotary handle with door locking, directly accessible from outside the enclosure.

Depth adjuster

This accessory is required to align the front of Multi 9 devices when they are installed next to a Compact NSA125 or NSA160. Maximum width 324 mm (36 modules).

Functions and characteristics

The circuit breakers presented here provide protection against short circuits and are suitable for isolation as defined by standard IEC 60947-2.
For complete protection of the motor and its control device, overload protection may be provided by either the circuit breaker or a separate Telemecanique thermal relay. The control device may be of the direct on-line type (with or without reversing) or of the "star-delta" type.
Combinations are governed by standard IEC 60947-4.1.

Protection coordination (as defined by IEC 60947-4)

Whatever the power of the motor, the coordination between the circuit breaker, contactor and relay can be of either type 1 or 2 .
Selection depends on operational requirements concerning continuity of service and the technical skills of servicing personnel.
All type 2 Merlin Gerin/Telemecanique combinations have been tested under the conditions defined by standards and they are certified ASEFA/LOAG.

Motor protection up to 37 kW

Motor protection up to 250 kW

Compact NS100 to 630 circuit breakers for motor protection are the same as those for distribution systems, but are fitted with specific motor trip units.
Accompanying trip units
pages 47 to 49
MA magnetic trip units provide short-circuit protection. Interchangeable ME electronic trip units provide protection against short-circuits, overloads and phase imbalance

Motor protection up to 750 kW

General circuit-breaker characteristics
page 24
Compact NS630b to 1600 circuit breakers equipped with Micrologic control units are the same as those for distribution systems.
Accompanying control units
Micrologic electronic control units may be used on all Compact NS630b to 1600 circuit breakers.
Micrologic 2.0 A and 5.0 A electronic control units provide protection against short-circuits and
overloads. Micrologic 7.0 A provides the same protection functions, plus earth-leakage protection.

Selection of a trip unit or Micrologic control unit

Functions and Motor protection characteristics Compact NS80H-MA

This circuit breaker is specially designed for the protection of motors rated up to 37 kW : - due to its high current-limiting capacity, it effectively protects motor starters (type-2 coordination as per IEC 60947-4, with contactors)
■ small size for easy installation in motor control centre (MCC) switchboards.

Compact circuit breakers		NS80 H-MA
Number of poles		3
Control	manual toggle direct or extendedrotary handle electric	
Connections	fixed front connection rear connection	
	withdrawable front connection rear connection	
Electrical characteristics as per IEC 60947-2		
Rated current (A)	In $65{ }^{\circ} \mathrm{C}$	80
Rated insulation voltage (V)	Ui	750
Rated impulse withstand voltage (kV)	Uimp	8
Rated operational voltage (V)	Ue CA $50 / 60 \mathrm{~Hz}$	690
Ultimate breaking capacity (kA rms)	Icu CA 50/60 Hz $220 / 240 \mathrm{~V}$ $380 / 415 \mathrm{~V}$ 440 V 500 V 525 V $660 / 690 \mathrm{~V}$	$\begin{aligned} & 100 \\ & 70 \\ & 65 \\ & 25 \\ & 25 \\ & 6 \end{aligned}$
Service breaking capacity Ics \% Icu		100\%
Utilisation category		A
Suitability for isolation		\square
Endurance (C-O cycles)	mechanical	20000
	$\begin{array}{ccc} \hline \text { electrical } & 440 \mathrm{~V} & \ln / 2 \\ & \ln \end{array}$	$\begin{aligned} & 10000 \\ & 7000 \end{aligned}$
Electrical characteristics as per Nema AB1		
Breaking capacity (kA)	$\begin{aligned} & 240 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 65 \\ & 10 \end{aligned}$
Protection		
Magnetic trip unit built-in		
Rating In	$\begin{array}{lllll}1.5 & 2.5 & 6.3 & 12.5 & 25\end{array}$	80
Instantaneous short-circuit Im adjustable pick-up protection $6 \ldots 14 \times$ In		
Earth-leakage protection combination with Vigirex relay		
Indication and control auxiliaries		
Indication contacts		$1 \mathrm{OF}+1$ SD
Voltage releases		MN or MX
Installation and connections		
Connections		Built-in terminals
Terminal extensions and spreaders		-
Terminal shields		\square
Phase barriers		-
Plate for symmetrical rail (DIN)		\square
Weight (kg)		$90 \times 120 \times 80$
		1.0

Compact NS100 to 630 circuit breakers with MA magnetic trip units

Compact NS100 to 630 circuit breakers, equipped with an MA magnetic trip unit with adjustable thresholds, offer:
■ short-circuit protection
\square suitability for isolation.
Compact NS100 to 630 circuit breakers and the trip unit are supplied already assembled.

Compact NS250H

Compact NS400H-MA

General circuit-breaker characteristics page 18

Compact NS100 to 250 circuit breakers, equipped with an STR22ME electronic trip unit with adjustable thresholds, offer:
■ short-circuit protection

- phase-imbalance protection
- overload protection
- suitability for isolation.

Compact NS250 equipped with an STR22ME electronic trip unit

Compact NS100 to $\mathbf{2 5 0}$ circuit breakers

See the circuit breakers for distribution systems on page 16.

STR22ME electronic trip unit

Protection

Overload protection

LT (long time) protection with adjustable Ir threshold, in compliance with tripping class 10 as defined by IEC 60947-4.
Short-circuit protection
Short-time and instantaneous protection:
■ short-time protection with fixed pick-up ($\mathrm{Im}=13 \times \mathrm{Ir}$) and tripping delay
■ instantaneous protection with fixed pick-up ($15 \times \mathrm{ln}$).
Phase-imbalance protection
This function complies with the stipulations of standard IEC 60947-4.1 and trips the circuit breaker whenever a phase-current imbalance of 40% or more occurs. The circuit-breaker opening time is between 3.5 and 6 seconds.

Indications

A LED on the front indicates the percent load:

- ON - load is > 90\% of Ir setting
\square flashing - load is $\geqslant 1.05 \%$ of Ir setting.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation after installing the trip unit or accessories.

Optional SDTAM contactor tripping module

(Early-break thermal-fault signal)
This module opens the contactor if an overload occurs, thus making it possible to:

- differentiate between tripping due to overloads and short-circuits
- improve continuity of service (no manual reset following tripping due to an overload).

This module can also be used to signal a thermal fault.

Characteristics

■ manual reset (local or remote).

- compatible with the following control voltages:
- 24 to 72 V DC and 24 to 48 V AC
- 110 to 240 V AC / DC.
- replaces the $M N$ and $M X$ voltage releases.

1 long-time current setting
tripping class 10 as defined by IEC 60947-4 short-time pick-up
short-time tripping delay
5 instantaneous pick-up
6 test connector
7 percent load indication

STR22ME trip unit
$\left.\begin{array}{ll|lll} & 20 \text { to } 70^{\circ} \mathrm{C} & 20 \ldots 100 & 150 & 220 \\ \hline & \mathrm{NS} 100 \mathrm{~N} / \mathrm{H} / \mathrm{L} \\ \mathrm{NS} 160 \mathrm{~N} / \mathrm{H} / \mathrm{L} \\ \mathrm{NS} 250 \mathrm{~N} / \mathrm{H} / \mathrm{L}\end{array}\right)$

Phase-imbalance protection in compliance with IEC 60947-4.1

Tripping threshold	$\geqslant 40 \%$ imbalance
Time delay	3.5 to 6 seconds
Short-circuit protection (Short Time)	
Pisk-up	fixed
	$13 \times$ Ir
Accuracy	$\pm 20 \%$
Max. resettable time (ms)	fixed
Max. break time	10
Short-circuit protection (Instantaneous)	60
Pick-up	fixed
	$15 \times \ln$
Options	
SDTAM module	Ii

Overload protection settings (A)

rating (A)	thresholds (\mathbf{A})									
20	12	12.6	13.4	14.2	15	16	17	18	19	20
25	15	15.7	16.7	17.7	18.7	20	21.2	22.5	23.7	25
40	24	25.5	27	28.5	30	32	34	36	38	40
50	30	31.5	33.5	35.5	37.5	40	42.5	45	47.5	50
80	48	51	54	57	60	64	68	72	76	80
100	60	63	67	71	75	80	85	90	95	100
150	90	95	101	107	113	120	127	135	142	150
220	132	140	148	157	166	177	187	198	209	220

Compact NS400 to 630 circuit breakers, equipped with an STR43ME electronic trip unit with adjustable thresholds, offer:
■ short-circuit protection

- phase-imbalance protection
- overload protection
- suitability for isolation.

Compact NS630 equipped with an STR43ME electronic trip unit

Compact NS400 to 630 circuit breakers

See the circuit breakers for distribution systems on page 16.

STR43ME electronic trip unit

Protection

Overload protection

True (rms) long-time protection with an adjustable threshold:
\square lo base setting (5 settings from 0.5 to 0.8) and Ir fine adjustment
(8 settings from 0.8 to 1)
\square adjustable tripping delay, in compliance with tripping classes 10A, 10 and 20 as defined by IEC 60947-4.
The STR43ME offers two motor-cooling time constants, associated with the motor starting class:

- short cooling time constant (the same as the heating time constant), providing maximum continuity of service and satisfactory motor protection
■ long cooling time constant (four times the heating time constant), providing maximum motor protection.

Short-circuit protection

Short-time and instantaneous protection:

- short-time protection with adjustable pick-up and fixed tripping delay
- instantaneous protection with fixed pick-up.

Phase-imbalance protection

This function complies with the stipulations of standard IEC 60947-4.1 and trips the circuit breaker whenever a phase-current imbalance of 40% or more occurs. The circuit-breaker opening time is 4 seconds $\pm 10 \%$.

Overload LED (\%Ir)

The LED flashes when the current is greater than the long-time threshold Ir.

Fault indications

LEDs indicate the type of fault that caused tripping:
■ overload (long-time protection) or abnormal component temperature (> Ir)

- short-circuit (short-time protection) or instantaneous (> Isd)
$■$ phase imbalance (LED on the right)
- microprocessor malfunction:
\square all four (\% Ir), (> Ir), (> Isd) and (phase imbalance) LEDs ON.
Battery powered. Spare batteries are supplied in an adapter box. When a fault occurs, the LED indicating the type of fault goes OFF after approximately ten minutes to conserve battery power. The information is however stored in memory and the LED can be turned back ON by pressing the battery/LED test pushbutton. The LED automatically goes OFF and the memory is cleared when the circuit breaker is reset.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation after installing the trip unit or accessories. The test pushbutton tests the battery and the LEDs.

Self monitoring

The circuit breaker trips if a microprocessor fault or an abnormal temperature is detected.

Options

Three options are available:

- ammeter (I)
- contactor tripping module (SDTAM)
- communication (COM).

1 long-time current setting tripping class 10 as defined by IEC 60947-4 short-time pick-up short-time tripping delay
5 instantaneous pick-up
6 test connector
7 percent load indication

Possible

combinations:
$\square 1$

- I COM

■ SDTAM

- SDTAM + 1

■ SDTAM + I + COM

Current setting	Ir	adjustable, 40 settings - $0.4 \ldots \ldots 0.8 \mathrm{ln}$		
Tripping class (IEC 60947-4)		10A, 10, 20		
$\begin{aligned} & \text { Time delay (s) } \\ & \begin{array}{r} (\min . \ldots \text { max.) at } 1.5 \times \mathrm{lr} \\ \text { at } 6 \times \mathrm{Ir} \\ \text { at } 7.2 \mathrm{lr} \end{array} \end{aligned}$		$\begin{aligned} & \hline \text { adjustable } \\ & 144 \ldots .198 \\ & 5.8 . .7 .3 \\ & 4 \ldots 5 \end{aligned}$	$\begin{aligned} & 270 \ldots 357 \\ & 10.9 \ldots 13.1 \end{aligned}$	$\begin{aligned} & 433 \ldots 595 \\ & 17.4 \ldots 21.8 \\ & 12 \ldots .15 \end{aligned}$

Phase-imbalance protection in compliance with IEC 60947-4.1

Tripping threshold	$\geqslant 40 \%$ imbalance
Time delay	$4 \mathrm{~s} \pm 10 \%$

Short-circuit protection (Short Time)

Pick-up Isd Accuracy	$\begin{aligned} & \text { adjustable, } 8 \text { settings }-6 \ldots .13 \times \text { Ir } \\ & \pm 15 \% \end{aligned}$
Max. resettable time (ms)	$\begin{aligned} & \text { fixed } \\ & 10 \end{aligned}$
Max. break time (ms)	60
Short-circuit protection (Instantaneous)	
Pick-up Ii	fixed-13x Ir max.
Other functions	
Motor-overload LED	\square
Indications module	-
Options	
Ammeter (I)	\square
SDTAM module	\square
Communication (COM)	\square

Options for STR43ME trip unit

Ammeter (I)

A digital display continuously indicates the current of the phase with the greatest load. The value of each current I_{1}, I_{2}, I_{3} and the long-time current setting Ir may be successively displayed by pressing a scroll button.
LEDs indicate the phase for which the current is displayed.

Ammeter display limits

■ minimum current $\geqslant 0.2 \times \mathrm{In}$. Lower currents are not displayed.
■ maximum current $\leqslant 10 \times \ln$.

Optional SDTAM contactor tripping module

(Early-break thermal-fault signal)
See the information on this optional module on page 44.

Communication (COM)

This option transmits data to Digipact distribution monitoring and control modules
Transmitted data:
■ settings;
■ phase currents (rms values);
■ highest current of the three phases;
■ overload-condition alarm;
■ cause of tripping (overload, short-circuit, etc.).

Functions and characteristics

Protection of industrial control panels Overview of solutions

Compact NS circuit breakers are specially designed to protect incoming feeders and groups of outgoing circuits on industrial control panels:
■ compliance with standards applicable worldwide including IEC 60947-2 and UL 508 / CSA 22-2 no. 14
■ overload and short-circuit protection
■ isolation with positive contact indication, making it possible to service machines safely by isolating them from all power sources

- installation in universal and functional
type enclosures
■ NA switch-disconnector version.

Compact NSC100 circuit breakers are specially designed to protect industrial control panels.
Accompanying trip unit
page 53
The built-in TMD thermal-magnetic trip unit provides:
■ overload protection (adjustable-threshold thermal device

- short-circuit protection (fixed-pick-up magnetic device)

Compact NS100 to 630 (UL 508 / IEC 60947-2 / CSA22-2)

Compact NS100 to 630 circuit breakers are designed for protection of distribution systems and are also suitable for protection of industrial control panels.

Accompanying trip unit

page 22
The trip units are interchangeable.
Compact NS100 to 250 circuit breakers are equipped with TMD thermal-magnetic or STR electronic trip units.
Compact NS400 to 630 circuit breakers are equipped exclusively with STR electronic trip units.

Circuit breaker NSC100N

Compact NS100N circuit breakers are specially designed to protect incoming feeders and groups of outgoing circuits on industrial control panels.
The NSC100NA switch-disconnector version is also available.

Compact NSC100N

Compact circuit breaker		NSC100N
Number of poles		3, 4
Control	manual - toggle direct or extended rotary handle electric	
Connections	fixed front connection	-
	with- front connection drawable rear connection	-
Mounting on symmetrical rail		-
Electrical characteristics as per IEC 60947-2		
Rated current (A)	In $40{ }^{\circ} \mathrm{C}$	100
Rated insulation voltage (V)	Ui	750
Rated impulse withstand voltage (kV)	Uimp	8
Rated operational voltage (V)	UeAC $50 / 60 \mathrm{~Hz}$ DC	$\begin{aligned} & 690 \\ & 250 \\ & \hline \end{aligned}$
Ultimate breaking capacity (kA rms)	Icu AC $220 / 240 \mathrm{~V}$ $50 / 60$ $380 / 415 \mathrm{~V}$ Hz 440 V 500 V 525 V	42 18 18 10 10
	$\begin{array}{ll} \hline \text { DC } & 125 \mathrm{~V} \\ & 250 \mathrm{~V}(2 \mathrm{P}) \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$
Service breaking capacity	Ics \% Icu	100\%
Utilisation category		A
Suitability for isolation		-
Endurance (C-O cycles)	mechanical	20000
	$\begin{array}{ccc} \hline \text { electrical } & 440 \mathrm{~V} & \ln / 2 \\ & \ln \end{array}$	$\begin{aligned} & 10000 \\ & 7000 \end{aligned}$
Electrical characteristics as per UL 508		
Breaking capacity (kA)	AC 50/60 Hz 240 V 480 V 600 V	$\left\lvert\, \begin{aligned} & 42 \\ & 18 \\ & 10 \end{aligned}\right.$
Protection		
Built-in thermal-magnetic trip unit		
Ratings In	$\begin{array}{llllll}16 & 20 & 25 & 32 & 40 & 50\end{array}$	$\begin{array}{llll}63 & 70 & 80 & 100\end{array}$
Instantaneous short-circuit Im protection (A)	fixed pick-up 60060060060010001000	1000100010001250
Additional earth-fault protection	add-on Vigi module combination with Vigirex relay	
Indication and control auxiliaries		
Auxiliary contacts		\square
Early-make or early-break contact		\square
Voltage releases		MN or MX
Installation and connections		
Connection	built-in terminals	
Accessories	terminal shields phase barriers escutcheons	
Dimensions (mm)	3 P	$90 \times 120 \times 80$
W $\times \mathrm{H} \times \mathrm{D}$	4 P	$120 \times 120 \times 80$
Weight (kg)	3 P 4 P	$\begin{aligned} & 1.0 \\ & 1.3 \\ & \hline \end{aligned}$

[^3]
Vigi earth-fault protection module

The Vigi earth-fault protection module may be installed to the right of the circuit breaker. Connections with the circuit breaker are possible to the top or bottom of the Vigi module (two versions). The connection is supplied with the Vigi module.

Characteristics

Number of poles	3, 4
Sensitivity (A)	0.03 / 0.3/1/3
Time delay intentional (ms) max. break time	$\begin{array}{lll} \hline 0 & 60_{(1)} & 150_{(1)} \\ <40 & <140 & <150 \\ \hline \end{array}$
Rated voltage (V) $50 / 60 \mathrm{~Hz}$	200 to 440 V
Reset	pushbutton
Test	pushbutton
Protection against nuisance tripping	\square
DC-component withstand	class A

The UL 508 / CSA 22-2 no. 14 approval is for a "Manual Motor Controller" ("across the line starter" or "general use").
The circuit breakers are 100\% rated.

NSC100 device marking
(circuit breaker with built-in trip unit)

(1) LISTED MAN. MOTOR. CTRL. (SA					
NS100-160-250 N/H/NA					
Equipped with TMD/DE or STR trip unit This MMC is suitable for use on a circuit capable of delivering not more than the short-circuit current rating of this MMC indicated here below, or the upstream protective device interrupting capability, whichever is less, when protected by any protective device for Group fusing or Group installation.					
SC current rating kA $50 / 60 \mathrm{~Hz}$					
Vac	NS100		NS160	NS250	
	N	H N	H	N	
240	85	8585	85	85	85
480	25	65	65	35	65
600	10	1010	10	18	18
tripping current 125\%	100\% rated				
temperature rating $75^{\circ} \mathrm{C}$ wire size	tightening torque lb-inch $\quad \mathrm{Nm}$		Terminal kit reference 3 P 4 P		
14 AWG to 3/0 AWG Cu	130	11.3	29242	29243	
12 AWG to 4/0 AWG Al					
4 AWG to 2 AWG Cu,Al	180	20	29259	29260	
1 AWG to $350 \mathrm{kcmil} \mathrm{Cu,Al}$	230	26			

NS100 to 250 device marking
(circuit breaker with interchangeable trip unit)

UL / CSA logo

Breaking capacity

UL / CSA logo
\qquad

Breaking capacity

Horsepower rating

Cable cross-section and tightening torques
Breaking capacity
Horsepower rating
Cable cross-section
and tightening torques
\qquad
Cable cross-section and tightening torques
\qquad

Trip-unit marking

Trip units, auxiliaries, installation enclosures

Trip-unit selection

P (hp) (480 V, 3P)	3	10	15	20	30	30	40	50	60	75	125	150	150	250	400
Ir (A)	12	16	25	32	40	48	63	70	80	100	160	205	220	320	500
Compact NSC100N	TMD														
$\begin{aligned} & \text { Compact } \\ & \text { NS100 ... NS250 } \end{aligned}$	STRP2ME														
$\begin{aligned} & \text { Compact } \\ & \text { NS400 ... NS630 } \end{aligned}$															
						STR43ME / STR23SE / STR53UE									

STR electronic trip units are designed for:
■ short-circuit protection

- overload protection
\square phase-failure protection (STR22ME and STR43ME).
TMD thermal-magnetic trip units are designed for:
■ short-circuit protection
- overload protection.

Type NA devices are switch-disconnectors which must always be protected upstream in accordance with applicable installation standards.

Circuit breakers	trip units	approvals NSC100N
	TMD	"Manual Motor Controller: General use"
NS100/160/250 N/H	STR22ME	"Manual Motor Controller:
	NA	Across the line starter"

Auxiliaries

All auxiliaries can be added to the circuit breaker by the user:

- padlocking devices (in the OFF position);
- rotary handle
- status-indication auxiliary contacts (ON, OFF and tripped)

■ shunt (MX) or undervoltage (MN) releases
■ early-make or early-break contacts.

Rotary handle

Available in direct or extended versions for mounting up to 590 mm behind front. Versions include:

- black front with black handle
- yellow front with red handle (for machine tools or emergency off as per IEC 204 / VDE 0013).
All rotary handles can be padlocked in the OFF position.
Optional door interlock, recommended for MCC panels (motor control centre).

Early-make or early-break contacts

These auxiliary contacts make it possible to de-energise the downstream auxiliary circuits of the control panel as well as the auxiliary circuits supplying the MN release, if applicable.

Installation enclosure

Installation in an enclosure

Compact circuit breakers can be installed in a metal enclosure together with other devices (contactors, motor-protection circuit breakers, LEDs, etc.)

Minimum enclosure dimensions

Disjoncteurs	Height (mm)	Depth (mm)	Width (mm)
NSC100N	300	150	200
NS100 N/H	457	130	208
NS160 N/H	457	130	208
NS250 N/H	457	130	208
NS400 N/H	-	-	-
NS630 N/H	-	-	-

Earth-leakage protection Overview of solutions

Earth-leakage protection is obtained by: ■ fitting a Vigi earth-fault module on the circuit breaker (Compact NS100 to 630) ■ installing on the circuit breaker a Micrologic 7.0 A control unit offering the earth-leakage function (Compact NS630b to 3200) ■ using a Vigirex relay and separate toroids (all Compact circuit breakers).

1 residual-current measurement toroid
2 Vigirex earth-fault detection relay
3 MN or MX auxiliary release for earth-fault tripping

DCircuit breakers equipped with an additional Vigi module (Vigicompact)

Compact NS100 to 630 and NSA160 circuit breakers are presented in the "Protection of distribution systems" section and the Compact NSC100 circuit breaker is presented in the "Protection of industrial control panels" section.

Accompanying Vigi modules

Earth-leakage protection is achieved by installing a Vigi earth-fault protection module directly on the circuit-breaker terminals.

Circuit breakers equipped with a control unit offering integrated earth-leakage protection and an external rectangular sensor

Compact NS630b to 3200 circuit breakers are presented in the "Protection of distribution systems" section.
Accompanying control units page 28
Micrologic 7.0 A electronic control units offer earth-leakage protection as standard.
Earth-leakage protection using a Vigirex relay

Vigirex		Earth-fault relay	Separate toroids
Compact circuit breaker + Vigirex relay combination			
Vigirex relays may be used to add external earth-fault protection to Compact NS circuit breakers. The circuit breakers must be equipped with an MN or MX voltage release. Vigirex relays are very useful when special time-delay or tripping-threshold values are required, or when there are major installation constraints (circuit breaker already installed and connected, limited space available, etc.). Vigirex-relay characteristics: sensitivity adjustable from 30 mA to 250 mA and eight time-delay settings (0 to 1 second) closed toroids (30 to 300 mm in diameter) or split toroids (46 to 110 mm in diameter). Options: trip alarm by a fail-safe contact LED and pre-alarm contact (threshold $=0.5 \times \mathrm{I} \Delta \mathrm{n}$) 400 Hz distribution systems, etc. Compliance with standards: IEC 60947-2, appendix B French decree dated 14 November 1988 IEC 60255-4 and IEC 60801-2 to 5 covering protection against nuisance tripping due to transient overvoltages, lightning strikes, switching of devices on the distribution system, electrostatic discharges, radiofrequency interference. IEC 60755, class A, immunity to DC components up to 6 mA VDE 664, operation down to $-25^{\circ} \mathrm{C}$.			

Vigirex relays may be used to add external earth-fault protection to Compact NS circuit breakers. The circuit breakers must be equipped with an MN or MX voltage release. Vigirex relays are very useful when special time-delay or tripping-threshold values are required, or when there are major installation constraints (circuit breaker already installed and connected, limited space available, etc.). Vigirex-relay characteristics

- sensitivity adjustable from 30 mA to 250 mA and eight time-delay settings (0 to 1 second)
- closed toroids (30 to 300 mm in diameter) or split toroids (46 to 110 mm in diameter).
ptions
\square LED and pre-alarm contact (threshold $=0.5 \times \mathrm{I} \Delta \mathrm{n}$)
■ 400 Hz distribution systems, etc.
Compliance with standards
- IEC 60947-2, appendix B
- IEC 60255-4 and IEC 60801-2 to 5 covering protection against nuisance tripping due to transient discharges, radiofrequency interference.
- IEC 60755, class A, immunity to DC components up to 6 mA
- VDE 664, operation down to $-25^{\circ} \mathrm{C}$.

Additional Vigi module (Vigicompact) for Compact NS100 to 630

Vigicompact NS250N

1 sensitivity setting
2 time-delay setting (for selective earth-leakage protection)
lead-seal fixture for controlled access to settings
4 test button simulating an earth-leakage fault for regular checks on the tripping function
5 reset button (reset required after earth-fault tripping)
6 rating plate
7 housing for SDV auxiliary contact

Withdrawable circuit breaker

The Vigi module can be installed on a plug-in base. Special accessories are required (see the section on part numbers).

Vigicompact NSA160 and NSC100 circuit breakers
 with earth-fault protection

See pages 39 and 49, respectively.

DVigicompact NS100 to 630 circuit breakers with earth-fault protection

Addition of the Vigi module does not alter circuit-breaker characteristics:

- compliance with standards
- degree of protection, class II front-face isolation

■ positive contact indication

- electrical characteristics
- trip-unit characteristics
- installation and connection modes
- indication, measurement and control auxiliaries

■ installation and connection accessories.

Dimensions and weights		NS100/160	NS250	NS400/630
Dimensions	3 poles	$\begin{aligned} & 105 \times 236 \times 86 \\ & 140 \times 236 \times 86 \end{aligned}$		$135 \times 355 \times 110$
W x H x D (mm)	4 poles			$180 \times 355 \times 110$
Weight (kg)	3 poles 4 poles	$\begin{aligned} & 2.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 10.8 \\ & \hline \end{aligned}$

Vigi earth-leakage protection module

Compliance with standards:
■ IEC 60947-2, appendix B

- French decree dated 14 November 1988

■ IEC 60255-4 and IEC 60801-2 to 5 covering protection against nuisance tripping due to transient overvoltages, lightning strikes, switching of devices on the distribution system, electrostatic discharges, radiofrequency interference.

- IEC 60755, class A, immunity to DC components up to 6 mA
- VDE 664, operation down to $-25^{\circ} \mathrm{C}$.

Remote indications

Vigi modules may be equipped with an auxiliary contact to remotely signal tripping due to an earth fault.

Power supply

Vigi modules are self-supplied internally by the distribution-system voltage and therefore do not require any external source. They continue to function even when supplied by only two phases.

Vigi module selection table

(1) Vigi $3 P$ modules may also be used on $2 P$ circuit breakers (3P case)
(2) If the sensitivity is set to 30 mA , there is no time delay, whatever the time-delay setting.

Functions and characteristics

Control and breaking
Overview of solutions

Legend

Compact switch-disconnectors are used to control and isolate electrical distribution circuits. In addition to these basic functions, other functions for safety, remote control and convenience include:
■ earth-fault protection
■ auxiliary MN/MX releases

- remote operation
- ammeter, etc.

Compact switch-disconnectors may be interlocked with another Compact switchdisconnector or circuit breaker to constitute a source-changeover system.

Compact NS250 switch-disconnector

Compact switch-disconnector equipped with a Vigi module

Compact switch-disconnector equipped with a motor mechanism

MN/MX voltage release

Functions
and characteristics

Control and disconnection Compact NSA125NA and NSA160NA switch-disconnectors

Installation standards require upstream protection. However, due to their reflextripping capacity, Compact NSA125 and 160NA switch-disconnectors are self protected.

Compact NSA125NA

Compact switch disconnectors

[^4]Manual source-changeover systems

Installation standards require upstream protection. However, due to their reflextripping capacity, Compact NSA125 and 160NA switch-disconnectors are self protected.

Compact NS100NA

Compact switch disconnectors

NSC100NA	NS100NA	NS160NA	NS250NA	NS400NA	NS630NA
3, 4	$2^{(1)}$, 3,4	$2{ }^{(1)}$, 3,4	$2^{(1)}$, 3,4	3, 4	3, 4
\square					
-	-	\square	\square	\square	\square
-					
-		$\begin{array}{\|l\|} \hline \mathbf{n} \\ \hline \end{array}$			
-		$\mathbf{\square}$			
100	100	160	250	400	630
750	750	750	750	750	750
8	8	8	8	8	8
$\begin{aligned} & 690 \\ & 250 \end{aligned}$	$\begin{array}{\|l\|} \hline 690 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 690 \\ & 500 \end{aligned}$	$\begin{aligned} & 690 \\ & 500 \end{aligned}$	$\begin{array}{\|l\|} \hline 690 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 690 \\ & 500 \\ & \hline \end{aligned}$
AC 22 A AC 23 A					
100100	100100	160160	250 250	400400	630 630
100100	100100	160160	250250	$400 \quad 400$	630630
100100	100100	160160	250250	400400	630630
100100	100100	160160	250250	$400 \quad 400$	630630
- -	100100	$160 \quad 160$	250250	$400 \quad 400$	$630 \quad 630$
DC 22 A DC 23 A					
- -	100100	160160	250250	400400	630630
- -	100100	$160 \quad 160$	250250	$400 \quad 400$	$630 \quad 630$
$\begin{aligned} & 2.1 \\ & 330 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.6 \\ 330 \end{array}$	$\begin{array}{\|l\|} \hline 3.6 \\ 330 \end{array}$	$\begin{array}{\|l\|} \hline 4.9 \\ 330 \end{array}$	$\begin{array}{\|l\|} \hline 7.1 \\ 330 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8.5 \\ 330 \\ \hline \end{array}$
$\begin{aligned} & 1500 \\ & 1500 \\ & 580 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1800 \\ 1800 \\ 690 \\ \hline \end{array}$	$\begin{aligned} & 2500 \\ & 2500 \\ & 960 \\ & \hline \end{aligned}$	$\begin{aligned} & 3500 \\ & 3500 \\ & 1350 \\ & \hline \end{aligned}$	$\begin{aligned} & 5000 \\ & 5000 \\ & 1930 \\ & \hline \end{aligned}$	$\begin{aligned} & 6000 \\ & 6000 \\ & 2320 \\ & \hline \end{aligned}$
-	-	\square	-	-	\square
$\begin{aligned} & 20000 \\ & 7000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 50000 \\ 50000 \\ 30000(50000-\ln / 2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 40000 \\ 40000 \\ 20000(40000-\ln / 2) \\ \hline \end{array}$	20000 20000 $10000(20000-\ln / 2)$ $10000(2000-\ln / 2)$	$\begin{array}{\|l\|} \hline 15000 \\ 15000 \\ 6000(12000-\ln / 2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 15000 \\ 15000 \\ 4000(8000-\ln / 2) \\ \hline \end{array}$
7000	30000 (50000-In/2)	20000 (40000-In/2)	10000 (20000-In/2)	6000 (12000-\| $\ln / 2$)	4000 (8000-In/2)
\square	-	-	\square	■	\square
III	III	III	III	III	III
\square	\square			\square	
\square					
-	\square			\square	
-	\square			-	
-	\square			\square	
-	-			-	
\square	\square			-	
-	-			-	
	■				
$\begin{aligned} & 90 \times 120 \times 80 \\ & 120 \times 120 \times 80 \end{aligned}$	$\begin{aligned} & 105 \times 161 \times 86 \\ & 140 \times 161 \times 86 \end{aligned}$			$\begin{array}{\|l} \hline 140 \times 255 \times 110 \\ 185 \times 255 \times 110 \\ \hline \end{array}$	
$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \text { to } 1.8 \\ 2.0 \text { to } 2.2 \\ \hline \end{array}$			$\begin{aligned} & 5.2 \\ & 6.8 \end{aligned}$	
\square (locking)				\square	
	\square			\square	

Functions

and characteristics

Control and disconnection Compact NS630bNA to 1600NA switch-disconnectors

Installation standards require upstream protection. However, due to their reflextripping capacity, Compact NS630b to 1600NA switch-disconnectors self protect for all currents higher than 25 kA

Compact switch disconnectors

Source-changeover system (see section on source-changeover systems)
Manual source-changeover systems, remote-controlled and automatic

Functions
and characteristics

Control and disconnection Compact NS1600b to 3200NA switch-disconnectors

Installation standards require upstream protection. However, due to their reflextripping capacity, Compact NS1600b to 3200NA switch-disconnectors self protect for all currents higher than 30 kA.

Compact switch disconnectors

Manual source-changeover systems, remote-controlled and automatic

Functions
and characteristics

Control and isolation
Protection of switch-disconnectors

Info to come

Info to come

Functions
and characteristics

Control and isolation
Protection of switch-disconnectors

Info to come

Info to come

Functions and characteristics

For complete, in-depth information, see the
"Interpact, Compact, Masterpact sourcechangeover systems" catalogue.

Service sector

- hospital operating rooms.
- safety systems for tall buildings.

■ computer rooms (banks, insurance companies, etc.).

- lighting systems in shopping centres.

Industry

- assembly lines.
- engine rooms on ships.
- critical auxiliaries in thermal power stations.

Infrastructure

- port and railway installations.
- runway lighting systems.
- control systems for military installations.

Manual source-changeover systems

This is the most simple type. Intervention by technical personnel is required, i.e. transfer from the normal source to the replacement source is not immediate. A manual source-changeover system can be installed on two to three manuallycontrolled circuit breakers or switch-disconnectors. Interlocking is mechanical. Interlocks prevent connection to both sources at the same time, even momentarily.

Remote-controlled source-changeover systems

This is the most commonly employed system. No human intervention is required. Switching from the normal to the replacement source is controlled electrically.
A remote-controlled source-changeover system is made up of two or three circuit breakers or switch-disconnectors linked by electrical interlocking system (different configurations possible). Device operation is backed up by a mechanical interlocking fixture that prevents parallel connection if the electrical system malfunctions or if an incorrect manual operation is attempted.

Automatic source-changeover systems

An automatic controller may be added to the remote-controlled source-changeover system for automatic source control according to programmable operating modes.
This solution ensures optimum energy management:
\square switching to a replacement source depending on external requirements

- management of power sources
- regulation

■ emergency source replacement, etc.
The automatic controller may be fitted with an option for communication with a supervisor.

Manual source-changeover systems

A manual source-changeover system can be installed on two to three manuallycontrolled circuit breakers or switchdisconnectors. Interlocking is mechanical. Interlocks prevent connection to both sources at the same time, even momentarily.

Interlocking of two toggle-controlled devices

Interlocking of two devices with rotary handles

Interlocking with keylocks

Interlocking on base plates

Interlocking of two or three toggle-controlled devices
Two devices can be interlocked using this system. Two identical interlocking systems can be used to interlock three devices installed side by side, in which case one device is in the ON position and the two others are in the OFF position.
The system is locked using one or two padlocks (hasp diameter 5 to 8 mm).

Combination of Normal and Replacement devices

There are two interlocking-system models:
■ Compact NS100 to 250
■ Compact NS400 to 630 (can also be used for a Compact NS100 to 250).
Devices must be either all fixed or all withdrawable.

Interlocking of two devices with rotary handles

The rotary handles are padlocked with the devices in the OFF position.
The mechanism inhibits the two devices being closed at the same time, but does allow for both to be open (OFF) at the same time.
Combination of Normal and Replacement devices
All Compact NS100 to 1600 circuit breakers and switch-disconnectors with rotary handles can be interlocked. Interlocking of a Compact NS100 to 630 with a Compact NS630b to 1600 is not possible.

Interlocking of a number of devices using keylocks (captive keys)

Interlocking uses two identical keylocks with a single key and a keylock adapter (different for each device). This solution enables interlocking between two devices that are physically distant or that have significantly different characteristics, for example between a low and a medium-voltage device, or between Compact NS circuit breakers and switch-disconnectors.
A system of wall-mounted units with captive keys makes possible a large number of combinations between many devices.

Combination of Normal and Replacement devices

All Compact NS100 to 1600 circuit breakers and switch-disconnectors with rotary handles or motor mechanisms can be interlocked.

Interlocking of two devices on a base plate

A base plate designed for two Compact devices can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the devices. Access to the device controls and trip units is not blocked.

Combination of Normal and Replacement devices

All manually controlled Compact NS100 to 630 circuit breakers and switchdisconnectors can be interlocked.
Devices must be fixed or plug-in versions, with or without earth-fault protection or measurement modules.

Functions and characteristics

Remote-controlled source-changeover system

Auxiliary control plate

Controller

A remote-controlled source-changeover system is made

up of:

1 circuit breaker QN equipped with a motor mechanism and auxiliary contacts, connected to the Normal source
2 circuit breaker QR equipped with a motor mechanism and auxiliary contacts, connected to the Replacement source
3 mounting base plate with mechanical interlocking (NS100 to 630) or an interlocking system using rods or cables (NS630b to 1600)
4 electrical interlocking unit. IVE for NS100 to 630 or an electrical system provided by the installer for NS630b to 1600. Electrical interlocking system example: part no. 51156903 in the source-changeover system catalogue.

Switching between sources can be automated by adding:
5 ACP auxiliary control plate
6 BA or UA controller, or an electrical system provided by the installer for NS630b to 1600. Electrical system example: part no. 51156904 and 51156904 in the sourcechangeover system catalogue.

Accessory:

7 coupling accessory (downstream connection) for NS 100 to 630

Source-changeover system without a controller

In this case, the automatic-control system to initiate changeovers between the Normal and Replacement sources under predefined conditions must be provided by the installation designer.

Source-changeover system with a controller

In this case, changeovers between the Normal and Replacement sources under predefined conditions are initiated by a Merlin Gerin controller.

Coupling accessory

This accessory may be used with the source-changeover system (with or without a controller) to facilitate connections.

7

Automatismes associés

When used with a remote-controlled source-changeover system, the BA or UA controllers initiate the automatic changeover operations according to userdefined sequences.

BA controller

UA controller
 the ACP plate, the IVE unit and the circuit breaker operating mechanisms. If this voltage is the same as the distribution-system voltage, the Normal and Replacement sources can be used directly for the power supply. If not, a BC-type or equivalent isolation transformer must be used.

Functions
and characteristics

Installation, connection
and accessories
Compact NB50 and 100

Compact NB250 to 600

Compact NB250

Installation, connection and accessories Compact NB50 and 100

Installation positions

Installation

Compact NB50 and 100 circuit breakers may be mounted vertically, horizontally or flat on their back without any derating of characteristics.
They are designed for easy installation in the various types of switchboards of each market and country.
Mounting on a DIN rail is possible using a special adapter.
Plug-in and withdrawable versions are not available for these circuit breakers.

Mounting on a backplate

Mounting on rails

Mounting on symmetrical rails (with adapter)

Front connection of bars or cables with lugs

The Compact NB50 to 100 devices are equipped as standard with terminals comprising snap-in nuts with screws (M8) for direct connection to insulated bars or cables with lugs.

Insulation of live parts

Terminal shields

Ter minal shields are sealable insulating accessories used for protection against direct contact with power circuits (degree of protection IP 40, IK07). They are supplied with sealing accessories.

Phase barriers

Phase barriers are safety accessories for maximum insulation at the power-connection points.
■ they clip easily onto the circuit breaker.

- not compatible with terminal shields.

Terminal shields

Phase barriers

Common-point changeover contacts can be used to remote circuit-breaker status information for indications, electrical locking, relays, etc.

Indication contacts

Contacts are available in three versions that all comply with international standard IEC 60947-5 and offer the following indication functions:
■ OF (open / closed): indicates the position of the circuit-breaker contacts
■ SD (trip indication): indicates that the circuit-breaker has tripped due to: -overload

- short-circuit

口operation of a voltage release.
Returns to de-energised state when the circuit breaker is reset.
■ OF + SD
Electrical characteristics of indication contacts
Rated thermal current (A) 6

Minimum load	6
10 mA at 24 V	

Utilisation category (IEC 60947-5-1)	AC12	AC15	DC12	DC14	
Operational	24 V	6	6	2.5	1
current (A)	48 V	6	6	2.5	0.2
	110 V	6	5	0.8	0.05
	$220 / 240 \mathrm{~V}$	6	4	-	-
	250 V	-	-	0.3	0.03
	$380 / 440 \mathrm{~V}$	6	3	-	-
	$660 / 690 \mathrm{~V}$	6	0.1	-	-

Remote tripping

MX shunt release

The MX release trips the circuit breaker when the control voltage rises above $0.7 \times$ Un. Control signals can be of the impulse type ($\geqslant 20 \mathrm{~ms}$) or maintained.

Operation

When the circuit breaker has been tripped by a release, it must be reset locally. MN or MX tripping has priority over manual closing. In the presence of a standing trip order, the main contacts cannot be closed, even temporarily.

Mechanical characteristics

■ endurance: 50\% of the rated circuit-breaker mechanical endurance

- releases snap in behind the front of the circuit breaker
connection using wires with a cross-sectional area of up to $1.5 \mathrm{~mm}^{2}$, to a built-in terminal block.

Electrical characteristics

- consumption:
- pick-up (MX): < 10 W
a seal-in (MN): < 5 VA.
- response time < 50 ms .

Installation, connection and auxiliaries Compact NB250 to 600

Installation

Compact NB250 to 600 circuit breakers may be mounted vertically, horizontally or flat on their back without any derating of characteristics.
They are designed for easy installation in the various types of switchboards used around the world.
Plug-in and withdrawable versions are not available for these circuit breakers.
Installation positions

Connection

Front connection to bars or cables with lugs

Compact NB50 and 100 circuit breakers are equipped as standard with terminals receiving snap-in nuts and screws (M8 for NB250, M10 for NB400 and 600) for direct connection of insulated bars or cables with lugs. Terminal extensions (right-angle, edgewise, spreaders) are available to solve all connection problems. For Compact NB600, connection most often requires the 52.5 mm or 70 mm pitch spreaders.

Lugs

Lugs are different for copper and aluminium cables.
They are supplied with phase barriers and are compatible with the long terminal shields.

- the small lugs for copper cables may be used for cables with the following cross-sectional areas: - 120, 150 or $185 \mathrm{~mm}^{2}$ (NB250) - 240 or $300 \mathrm{~mm}^{2}$ (NB400 and 600).

Crimping by hexagonal barrels or punching

- the small lugs for aluminium cables may be used for cables with the following cross-sectional areas: - 150 or $185 \mathrm{~mm}^{2}$ (NB250) 미 240 or $300 \mathrm{~mm}^{2}$ (NB400 and 600).
Crimping by hexagonal barrels.

Spreaders

Spreaders increase the pitch of the terminals. They are not compatible with terminal shields.

Right-angle terminal extensions

Straight terminal extensions for NB250

Edgewise terminal extensions for NB400 and 600

Small lug for copper cables

Small lug for aluminium cables

Spreaders

Front connection of bare cables
Bare-cable connectors for Compact NB circuit breakers may be used for both copper and aluminium cables.
1-cable connectors for Compact NB250
The connectors snap directly onto the device terminals or clip onto right-angle and straight terminal extensions as well as spreaders.

Distribution connector for Compact NB250

1-cable connector for Compact NB250

1-cable and 2-cable connectors for Compact NB400 and 600

Insulation of live parts

Terminal shields

Sealable insulating accessories are used for protection against direct contact with power circuits (degree of protection IP 40, IK07). They are supplied with sealing accessories.

Terminal-shield selection

- Mandatory for voltages > 400 V
- Special shield for Compact NB400 and 600 with spreaders.

Phase barriers

These safety accessories provide maximum insulation between phases at the power connection points. They: - clip easily onto the circuit breaker

■ are not compatible with terminal shields
■ version spécifique pour socle.

Phase barriers

Rear insulating screens

Installation, connection and auxiliaries Compact NB250 to 600 (cont.)

Indication contacts

Indication contacts

These common-point changeover contacts can be used to remote circuit-breaker status information for indications, electrical locking, relays, etc.
They comply with international standard IEC 60947-5.

Functions

■ OF (open / closed): indicates the position of the circuit-breaker contacts
■ SD (trip indication): indicates that the circuit-breaker has tripped due to: \square overload

- short-circuit
- operation of a voltage release
- operation of the "push-to-trip" button

Returns to de-energised state when the circuit breaker is reset.
$■$ SDE (fault trip indication): indicates that the circuit-breaker has tripped due to: - overload
\square short-circuit
Returns to de-energised state when the circuit breaker is reset. Installation
■ One model serves for all indication functions, depending on where it is fitted in the circuit breaker. The contacts snap into slots behind the front of the circuit breaker. On a Compact NB250N, the SDE function requires the SDE actuator.
Electrical characteristics of indication contacts

Rated thermal current (A)	6			
Minimum load	10 mA			
Utilisation category (IEC 60947-5-1)	AC12	AC15	DC12	DC14
Operational 24 V	6	6	2.5	1
current (A) 48 V	6	6	2.5	0.2
110 V	6	5	0.8	0.05
220/240 V	6	4	-	-
250 V	-	-	0.3	0.03
$380 / 440 \mathrm{~V}$	6	3	-	-
660/690 V	6	0.1		-

$M X$ or $M N$ release

Remote tripping

MX or MN releases are used to trip the circuit breaker.

MN undervoltage release

This release trips the circuit breaker when the control voltage drops below the tripping threshold:
\square tripping threshold between 0.35 and 0.7 times the rated voltage
■ circuit-breaker closing is possible only if the voltage exceeds 0.85 times the rated voltage.
Circuit-breaker tripping by an MN release meets the requirements of standard IEC 60947-2.

Delay unit for an MN release

The delay unit eliminates nuisance tripping due to voltage dips lasting $\leqslant 200 \mathrm{~ms}$.
It is used in conjunction with:

- 250 V DC MN release, control voltage 220/240 V AC
- 48 V DC MN release, control voltage 48 V AC.

MX shunt release

The MX release trips the circuit breaker when the control voltage rises above $0.7 \times$ Un. Control signals can be of the impulse type ($\geqslant 20 \mathrm{~ms}$) or maintained.

Operation

When the circuit breaker has been tripped by an MN or MX release, it must be reset locally.
MN or MX tripping has priority over manual closing. In the presence of a standing
trip order, the main contacts cannot be closed, even temporarily.

Mechanical characteristics

■ endurance: 50\% of the rated circuit-breaker mechanical endurance

- releases snap in behind the front of the circuit breaker

■ connection using wires with a cross-sectional area of up to $1.5 \mathrm{~mm}^{2}$, to a built-in terminal block.

Electrical characteristics

- consumption:
- pick-up (MX): < 10 W
- seal-in (MN):<5 VA

■ response time < 50 ms .

Padlocking

Locking in the OFF position guarantees isolation as defined by the IEC 947-2 standard. Devices may be locked by up to three padlocks, shackle diameter 5 to 8 mm (not supplied).

Locking of the toggle using a removable device.

Locking of the toggle using a fixed device.

Front-panel escutcheons

These optional auxiliaries, mounted on the front panel, ensure a degree of protection IP 40, IK 07.

Front-panel escutcheon, secured to the panel from the front.

Toggle cover:
■ degree of protection IP 43,
IK 07

- fits on the front of the circuit breaker.

Sealing accessories

This option includes the elements required to fit lead seals to prevent:

- front removal

■ access to auxiliaries

- terminal-shield removal

■ access to power connections.

Sealing accessories

Functions
and characteristics

Installation, connection and accessories Compact NS80H-MA, NSC100N

量

Front accessory for NSC100N (45 mm standard)

45 mm front

Compact NSA160

Installation, connection and accessories Compact NS80H-MA, NSC100N and NSA160

Installation

Installation

Compact NS80H-MA and NSC100N circuit breakers may be mounted vertically, horizontally or flat on their back without any derating of characteristics. They are designed for easy installation in the various types of switchboards of each market and country
Mounting on a DIN rail is possible using a special adapter.
The NSA160 circuit breaker may be mounted exclusively on a DIN rail.
These three circuit breakers are available in the fixed, front-connection version

NS80H-MA and NSC100N: mounting on backplate or mounting plate.

NS80H-MA and NSC100N: mounting on DIN rail (optional). NSA160: mounting on DIN rail (standard).

Standard 45 mm front optional on NSC100N standard on NSA160.

Front connection of bare cables

Compact NS80H-MA, NSC100N and NSA160 circuit breakers are equipped as standard with terminals for the connection of bare copper or aluminium cables from 1.5 to $70 \mathrm{~mm}^{2}$

Distribution connector

This connector screws directly to the circuit-breaker terminal. It is used to connect up to three cables:

Distribution connector

■ flexible cables from 1 to $10 \mathrm{~mm}^{2}$
■ rigid cables from 1.5 to $16 \mathrm{~mm}^{2}$

- with crimped or self-crimping ferrules from 1.5 to $4 \mathrm{~mm}^{2}$.

Insulation of live parts

Terminal shields

Terminal shields are sealable insulating accessories used for protection against direct contact with power circuits (degree of protection IP 40). They are supplied with sealing accessories.
For voltages $\geqslant 500 \mathrm{~V}$, terminal shields are mandatory.

Terminal shields

Indication contacts
Common-point changeover contacts provide remote circuitbreaker status information. They can be used for indications, electrical locking, relaying, etc.

Indication contacts

A single type of contact, complying with the IEC 60947-5 international recommendation, provides different indication functions, depending on the position where it is inserted in the device.
■ OF (open/closed) - indicates the position of the circuit breaker contacts
■ SD (trip indication) - indicates that the circuit breaker has tripped due to:
\square an overload

- a short-circuit
- an earth fault (Compact NSC100N and NSA160)
a operation of a voltage release.
Returns to de-energised state when the circuit breaker is reset.
■ SDV (earth fault indication) - inserted in the Vigi module on Compact NSC100N and NSA160 devices, it indicates that the circuit breaker has tripped due to an earth fault. Returns to de-energised state when the circuit breaker is reset.
All the above auxiliary contacts are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits)

Characteristics

Contacts		Standard			Low level			
Rated thermal current (A)		6			5			
Minimum load		10 mA at 24 V			1 mA at 4 V			
Utilisation category (IEC 60947-5-1)		AC12 AC15	DC12	DC14		AC15	DC12	DC14
Operational	24 V	66	2.5	1	5	3	5	1
current (A)	48 V	66	2.5	0.2	5	3	2.5	0.2
	110 V	65	0.8	0.05	5	2.5	0.8	0.05
	220/240 V	64	-	-	5	2	-	-
	250 V	- -	0.3	0.03	5	-	0.3	0.03
	380/440 V	63	-	-	5	1.5	-	-

MX or MN voltage release

Remote tripping

MX or MN voltage releases are used to trip the circuit breaker.

MN undervoltage release

This release trips the circuit breaker when the control voltage drops below a tripping threshold:
\square tripping threshold between 0.35 and 0.7 times the rated voltage
\square circuit breaker closing is possible only if the voltage exceeds 0.85 times the rated voltage.
Circuit breaker tripping by an MN release meets the requirements of standard IEC 60947-2
Time-delay unit for an MN release (Compact NS80H-MA)
Eliminates nuisance tripping due to transient voltage dips lasting $\leqslant 200 \mathrm{~ms}$:
It is used in conjunction with:
■ a 250 V DC MN release, control voltage 220/240 V AC
■ a 48 V DC MN release, control voltage 48 V AC.

MX shunt release

Trips the circuit breaker when the control voltage rises above $0.7 \times$ Un.
Control signals can be of the impulse type ($\geqslant 20 \mathrm{~ms}$) or maintained.

Operation

When the circuit breaker has been tripped by an MN or MX release, it must be reset locally.
MN or MX tripping takes priority over manual closing.
In the presence of a standing trip order, closing of the contacts, even temporary, is not possible.

Mechanical characteristics

■ endurance is equal to 50% of the mechanical endurance of the circuit breaker
\square the releases clip in behind the front cover
■ connection using wires up to $1.5 \mathrm{~mm}^{2}$ to integrated terminal blocks.

Electrical characteristics

■ consumption:
a pick-up (MX): < 10 W
\square seal-in (MN): < 5 VA
■ response time: < 50 ms

Installation, connection and accessories
Compact NS80H-MA, NSC100N and NSA160 (cont.)

Compact NS8OH-MA with a direct rotary handle

Compact NS80H-MA with an extended rotary handle

Rotary handles

There are two types of rotary handle:

- direct rotary handle
- extended rotary handle.

There are two models:

- standard with a black handle
- VDE with a red handle and yellow front for machine-tool control.

Direct rotary handle (NS80H-MA and NSC100N)
Degree of protection IP40, IK07.
The direct rotary handle maintains:

- visibility of and access to trip unit settings
- suitability for isolation

■ indication of the three positions O (OFF), I (ON) and tripped

- access to the "push to trip" button
- circuit breaker locking capability in the OFF position by one to three padlocks, hasp diameter $\varnothing 5$ to 8 mm (not supplied).
It replaces the circuit-breaker front cover.
Accessories transform the standard direct rotary handle for the following situations:
- motor control centre (MCC) switchboards:
a door opening disabled when the circuit breaker is ON
\square circuit-breaker closing is disabled if the door is open
- a higher degree of protection (IP43, IK07)

■ machine-tool control, complying with CNOMO E03.81.501, IP 54, IK08.

Extended rotary handle

Degree of protection IP 55, IK08
This handle makes it possible to operate circuit breakers installed inside switchboards, from the switchboard front.
It maintains:

- suitability for isolation

■ indication of the three positions O (OFF), I (ON) and tripped
■ access to trip unit settings, when the switchboard door is open

- circuit breaker locking capability in the OFF position by one to three padlocks, hasp diameter 5 to 8 mm (not supplied).
The door cannot be opened if the circuit breaker is ON or locked.
The extended rotary handle is made up of:
■ a unit that replaces the front cover of the circuit breaker (secured by screws)
- an assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally ■ an extension shaft that must be adjusted to the distance (min/max distance between back of circuit breaker and door is $185 / 600 \mathrm{~mm}$).

Locking systems

Locking in the OFF position guarantees isolation as per IEC 60947-2.
Padlocking systems can receive up to three padlocks with hasp diameters ranging from 5 to 8 mm (padlocks not supplied).

Toggle locking using a removable device

Outgoing-circuit identification

Compact NS80H-MA and NSC100N devices come with clip-in labels for hand written indications.
It is also possible to use pre-printed Telemecanique labels (part number AB1-** (8 digits).

[^5]Functions
and characteristics

Installation, connection
and accessories
Compact NS100 to 630 (fixed version)

Compact NS100 to 630
(withdrawable version)

Installation, connection and accessories Compact NS100 to 630

Installation

Fixed circuit breakers
Compact circuit breakers may be mounted vertically, horizontally or flat on their back without any derating of characteristics. They are designed for easy installation in the various types of switchboards of each market and country.

Mounting on a backplate (solid or slotted)

Mounting on rails

Mounting on a Prisma functional mounting plate.

The plug-in configuration makes it possible to: ■ extract and/or rapidly replace the circuit breaker without having to touch connections
■ allow for the addition of future circuits at a later date.

Compact NS250H on a plug-in base

Installation

Circuit breaker on a plug-in base

Mounting on a backplate

Mounting through a front panel

Mounting on rails

Protection against direct contacts with power circuits

- circuit breaker plugged in = IP4
- circuit breaker removed = IP2.
- circuit breaker removed, base equipped with shutters = IP4

Parts of a plug-in configuration

- Compact circuit breaker

■ set of power connectors added to the circuit breaker

- plug-in base for mounting on a backplate or on rails
- insulating screen, for use when the circuit breaker is installed on a backplate with front connections
- safety trip, installed on the circuit breaker, that causes automatic tripping if the circuit breaker is ON, before engaging or withdrawing it. The safety trip does not prevent circuit breaker operation, even when in the disconnected position - mandatory short terminal shields.

Accessories

Insulating accessories can be used to:
■ protect against direct contac

- increase insulation between phases
- disconnected position - the power circuits are disconnected, but the circuit breaker is still on the chassis and may still be operated (ON, OFF, push-to-trip).
- the circuit breaker may be locked using 1 to 3 padlocks (hasp diameter 5 to 8 mm), to prevent connection.
- the auxiliaries can be tested (with manual auxiliary connector).

Compact NS250H on a withdrawable chassis

Circuit breaker on a withdrawable chassis

Connected

Disconnected

Removed

The chassis is made up of two side plates installed on the base and two other plates mounted on the circuit breaker.

Accessories

- auxiliary contacts for installation on the fixed part, indicating the "connected" and "disconnected" positions
- toggle collar for circuit breakers with a toggle mounted through a front panel, intended to maintain the degree of protection whatever the position of the circuit breaker (supplied with a toggle extension)
\square keylock which, depending on the bolt fitted, can be used to:
a prevent insertion for connection
- lock the circuit breaker in the connected or disconnected positions.
\square telescopic shaft for extended rotary handles.

Installation

Front and rear connections

Fixed, plug-in and withdrawable Compact devices may all be equipped with front and rear connections.
Fixed device

Plug-in and withdrawable devices

Front connection

Rear connection

Rear connection through a backplate

Connection of fixed devices

Front connection of bars or cables with lugs

The Compact NS100 to NS630 devices are equipped as standard with terminals comprising snap-in nuts with screws (M8 for NS100 to 250, M10 for NS400 to 630) for direct connection to insulated bars or cables with lugs.
Additional terminal extensions (right-angle, edgewise spreaders) are available for all connection
requirements. Spreaders (52.5 or 70 mm pitch) may be fitted on the Compact NS400 to 630 .

Lugs

Lugs are different for copper and aluminium cables. They are supplied with phase barriers and are compatible with the long terminal shields. - the small lugs for copper cables may be used for cables with the following cross-sectional areas: - 120, 150 or $185 \mathrm{~mm}^{2}$ (NS100 to 250) - 240 or $300 \mathrm{~mm}^{2}$ (NS400 to 630).

Crimping by hexagonal barrels or punching.

- the small lugs for aluminium cables may be used for cables with the following cross-sectional areas: - 150 or $185 \mathrm{~mm}^{2}$ (NS100 to 250) - 240 or $300 \mathrm{~mm}^{2}$ (NS400 to 630). Crimping by hexagonal barrels.

Spreaders

Spreaders increase the pitch of the terminals.
They are not compatible with terminal shields on the Compact NS 100 to 250.
The one-piece spreader increases the pitch, thus making it possible to use the connection accessories
 of a larger device (e.g. a Compact NS100 to 250 can be fitted with the accessories of a Compact NS400 to 630). The one-piece spreader also provides protection against direct contact (see page xxxxx).

Right-angle terminal extensions

Straight terminal extensions for NS100 to 250

Edgewise terminal extensions for NS400 to 630

Small lug for copper cables

Small lug for aluminium cables

Spreaders

One-piece spreader

Front connection of bare cables

Bare-cable connectors for Compact NS devices may be used for both copper and aluminium cables.
1-cable connectors for Compact NS100 to 250
The connectors snap directly on to the device terminals or clip onto right-angle and straight terminal extensions as well as spreaders.

1-cable and 2-cable connectors for Compact NS400 to 630

The connectors are screwed to device terminals or right-angle terminal extensions.
Distribution connectors for Compact NS100 to 250 These connectors are screwed directly to device terminals. Phase barriers are supplied with distribution connectors, but may be replaced by long terminal shields. Each connector can receive six cables with cross-sectional areas ranging from 1.5 to $35 \mathrm{~mm}^{2}$ each.
Polybloc distribution block for Compact NS100 to 630 The Polybloc connects directly to the device terminals and is used to connect up to six or nine flexible or rigid cables with cross-sectional areas not exceeding $10 \mathrm{~mm}^{2}$, to each pole. Connection is made to spring terminals without screws.

1-cable connector for NS100 to 250

1-cable connector for NS400 to 630

2-cable connector for NS400 to 630

Distribution connector for NS100 to 250

Polybloc distribution block for NS100 to 250

Rear connection

Rear connections for bars or cables with lugs are available in two lengths. Bars may be positioned flat, on edge or at 45° angles depending on how the rear connections are positioned.
The rear connections are simply fitted to the device connection terminals. All combinations of rear connection lengths and positions are possible on a given device. The device is mounted on a backplate. For the connection of cables without lugs, the 1-cable connectors for Compact NS100 to 250 may be simply clipped onto the rear connections.

Four positions

Connection
of bare cables
to NS100 to 250

Installation, connection and accessories Compact NS100 to 630 (cont.)

Connection of plug-in devices

Connection of bars or cables with lugs

The plug-in base is equipped with terminals which, depending on their orientation, serve for front and rear connection. For rear connection of a base mounted on a backplate, the terminals must be replaced by insulated, long right-angle terminal extensions.
For Compact NS630 devices, connection most often requires the 52.5 or 70 mm pitch spreaders
Connection accessories
See the "Connection of fixed devices" section.

Connection of bare cables

All terminals may be equipped with bare-cable connectors. See the "Connection of fixed devices" section.

Plug-in base for Compact NS100 to 250 equipped with 1 -cable connectors

Plug-in base for Compact NS400 to 630 equipped with 2-cable connectors

One-piece spreader

One-piece spreader

Connection of large cables may require an increase in the distance between the device terminals. The onepiece spreader is an accessory that can also be fitted on Interpact INS switch-disconnectors. It offers the following features:
■ increases the pitch of the circuit-breaker terminals to correspond to that of the upstream device - compatible with all the connection accessories available for the upstream device (connectors, terminal extensions, etc.)
■ enhances insulation between phases in comparison with standard spreaders.

	NS100 to 250	NS400 to 630
Pitch without spreaders (mm)	35	45
Pitch with standard spreaders (mm)	45	52.5 or 70
Pitch with one-piece spreader (mm)	45	70

Mounting

When equipped with a one-piece spreader, Compact NS circuit breakers may be installed either at the back of a switchboard or on the front panel with a raiser. \square devices with different frame sizes can thus be aligned in the switchboard
\square the same mounting plate can be used for all devices (including Interpact INS switch-disconnectors).

Mounting at the back of a switchboard

Mounting on the front panel with a raiser

Connection and insulation accessories are identical to those for Interpact INS switch-disconnectors

Compact NS equipped with terminal shields.

Insulation of live parts

Terminal shields

Terminal shields are sealable insulating accessories used for protection against direct contact with power circuits (degree of protection IP40, IK07). They are supplied with sealing accessories.

Terminal-shield selection

- fixed circuit breaker, front connection - long terminal shields
■ fixed circuit breaker, rear connection - short terminal shields.
■ for voltages $\geqslant 500 \mathrm{~V}$, terminal shields are mandatory. ■ for voltages > 600 V , special connection kit with terminal shields and insulating screens
■ for Compact NS400 to 630 with spreaders, special
terminal shields for spreaders
■ for withdrawable circuit breaker (plug-in and chassis type), short terminal shields on the device are mandatory. Terminal shields on the base are possible. Long terminal shields for plug-in bases are used to: ■ protect against direct contact with power circuits
(degree of protection IP40, IK07)
- increase insulation between phases.

Insulating accessories for plug-in bases include: ■ an adapter offering the same connection possibilities as the circuit breaker

- long terminal shields for the plug-in base.

Phase barriers

Phase barriers are safety accessories for maximum insulation at the power-connection points:
■ they clip easily onto the circuit breaker

- not compatible with terminal shields
- special version for plug-in bases

Rear insulating screens

Screens are safety accessories for insulation between connections and the backplate. They are compatible with terminal shields and phase barriers.

Terminal shields

Phase barriers

Compact NS100/160/250

Compact NS400 to 630

Connection of electrical auxiliaries

Fixed configuration

Auxiliary circuits exit the device through a knock-out in the front cover.

Plug-in and withdrawable configurations

Automatic auxiliary connectors

Auxiliary circuits exit the circuit breaker via one to three automatic auxiliary connectors (nine wires each). These are made up of:
■ a moving part, connected to the circuit breaker via a support (one support per circuit breaker)
■ a fixed part, mounted on the plug-in base, equipped with connectors for bare cables up to $2.5 \mathrm{~mm}^{2}$.
Selection of automatic auxiliary connectors.
For Compact NS400 to 630, connection wires for the options installed with trip unit STR53UE also exit via the automatic auxiliary connectors.

Manual auxiliary connector for withdrawable configurations
Withdrawable circuit breakers may be equipped with one to three plugs with nine wires each. In "disconnected" position, the auxiliaries remain connected and can therefore be tested by operating the circuit breaker.

Nine-wire manual auxiliary connector
ach auxiliary is equipped with a terminal block with numbered terminals for connection of wires up to:

- $1.5 \mathrm{~mm}^{2}$ for auxiliary contacts and voltage releases
- $2.5 \mathrm{~mm}^{2}$ for the motor-mechanism module.

Installation, connection and accessories Compact NS100 to 630 (cont.)

Changeover contacts

All the auxiliary contacts opposite are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

Indication contacts

Common-point changeover contacts are used to remote circuit-breaker status information and can thus be used for indications, electrical locking, relaying, etc. They comply with the IEC 60947-5 international recommendation.

Functions

■ OF (open/closed) - indicates the position of the circuit breaker contacts
■ SD (trip indication) - indicates that the circuit breaker has tripped due to: - an overload

- a short-circuit
- an earth fault
- operation of a voltage release
- operation of the "push to trip" button
a disconnection when the device is ON.
Returns to de-energised state when the circuit breaker is reset.
- SDE (fault indication) - indicates that the circuit breaker has tripped due to:
- an overload
- a short-circuit
- an earth fault.

Returns to de-energised state when the circuit breaker is reset.
$■$ SDV (Earth fault indication) - indicates that the circuit breaker has tripped due to an earth fault.
Returns to de-energised state when the circuit breaker is reset.
■ CAM (early-make or early-break function) - indicates the position of the rotary
handle. Used in particular for advanced opening of safety trip devices (early break) or to energise a control device prior to circuit-breaker closing (early make).
■ CE / CD (connected/disconnected position) - microswitch type carriage switches
for withdrawable circuit breakers

Installation

- OF, SD, SDE and SDV functions - a single type of contact provides all these different indication functions, depending on the position where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker (or the Vigi module for the SDV function).
The SDE function on a circuit breaker equipped with a thermal-magnetic trip unit requires the SDE actuator.
■ CAM function - the contact fits into the rotary-handle unit (direct or extended).
■ CE / CD (connected/disconnected) function - two parts must be fitted on the fixed and moving parts of the chassis
Electrical characteristics of auxiliary contacts

Contacts	Standard		Low level	
Rated thermal current (A)	6		5	
Minimum load	10 mA at 24 V		1 mA at 4 V	
Utilisation cat. (IEC 60947-5-1)	AC12 AC15	DC12 DC14	AC12 AC15	DC12 DC14
Operational 24 V	66	2.51	53	5
current (A) $\quad 48 \mathrm{~V}$	66	2.50 .2	53	2.50 .2
110 V	65	0.80 .05	52.5	0.80 .05
220/240 V	64	- -	52	- -
250 V	- -	0.30 .03	5	0.30 .03
$380 / 440 \mathrm{~V}$	63	- -	51.5	- -
660/690 V	60.1	- -	- -	- -

Compact NS250L with a direct rotary handle

Compact NS250L with an extended rotary handle

Rotary handles

There are two types of rotary handle:

- direct rotary handle

■ extended rotary handle.
There are two models:
■ standard with a black handle
■ VDE with a red handle and yellow front for machine-tool control.

Direct rotary handle

Degree of protection IP40, IK07.
The direct rotary handle maintains:

- visibility of and access to trip unit settings
- suitability for isolation

■ indication of the three positions O (OFF), I (ON) and tripped

- access to the "push to trip" button
- circuit breaker locking capability in the OFF position by one to three padlocks, hasp diameter 5 to 8 mm (not supplied).
It replaces the circuit-breaker front cover.
Accessories transform the standard direct rotary handle for the following situations: ■ motor control centre (MCC) switchboards:
\square door opening disabled when the circuit breaker is ON
\square circuit-breaker closing is disabled if the door is open
■ a higher degree of protection (IP43, IK07)
■ machine-tool control, complying with CNOMO E03.81.501, IP54, IK08.

Extended rotary handle

Degree of protection IP 55, IK08
This handle makes it possible to operate circuit breakers installed inside switchboards, from the switchboard front.
It maintains:

- suitability for isolation

■ indication of the three positions O (OFF), I (ON) and tripped
\square access to trip unit settings, when the switchboard door is open
■ circuit breaker locking capability in the OFF position by one to three padlocks, hasp diameter 5 to 8 mm (not supplied).
The door cannot be opened if the circuit breaker is ON or locked.
The extended rotary handle is made up of:
■ a unit that replaces the front cover of the circuit breaker (secured by screws)

- an assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally ■ an extension shaft that must be adjusted to the distance. The min/max distance between the back of circuit breaker and door is:
- 185 to 600 mm for Compact NS100 to 250
- 210 to 625 mm for Compact NS400 to 630.

For withdrawable configurations, the extended rotary handle is also available with a telescopic shaft with two stable positions.

MX or MN voltage release

Remote tripping

MX or MN voltage releases are used to trip the circuit breaker.

MN undervoltage release

This release trips the circuit breaker when the control voltage drops below a tripping threshold:

- tripping threshold between 0.35 and 0.7 times the rated voltage
- circuit breaker closing is possible only if the voltage exceeds 0.85 times the rated voltage.
Circuit breaker tripping by an MN release meets the requirements of standard IEC 60947-2.
Time-delay unit for an MN release
Eliminates nuisance tripping due to transient voltage dips lasting 200 ms .
It is used in conjunction with:
■ a 250 V DC MN release, control voltage 220/240 V AC
- a 48 V DC MN release, control voltage 48 V AC.

MX shunt release

Trips the circuit breaker when the control voltage rises above $0.7 \times$ Un.
Control signals can be of the impulse type ($\geqslant 20 \mathrm{~ms}$) or maintained.

Operation

When the circuit breaker has been tripped by an MN or MX release, it must be reset locally.
MN or MX tripping takes priority over manual closing.
In the presence of a standing trip order, closing of the contacts, even temporary, is not possible.

Mechanical characteristics

- endurance is equal to 50% of the mechanical endurance of the circuit breaker
- the releases clip in behind the front cover
- connection using wires up to $1.5 \mathrm{~mm}^{2}$, to integrated terminal blocks.

Electrical characteristics

- consumption:
- pick-up (MX): < 10 W
\square seal-in (MN and MNR): < 5 VA
■ response time: < 50 ms .

Compact NS250H with motor mechanism

1 contact position indicator (suitability for isolation)
2 outgoing-circuit identification labels
3 spring status indicator (charged, discharged)
4 locking device (keylock)
5 locking device (OFF position), using 1 to 3 padlocks, hasp diameter 5 to 8 mm, not supplied
6 manual spring-charging lever
7 I (ON) pushbutton
8 O (OFF) pushbutton
9 manual/auto mode selection switch. The position of this switch can be indicated remotely
10 coperations counter (Compact NS400/630)

Motor-mechanism module

When equipped with a motor-mechanism module, Compact NS circuit breakers feature very high mechanical endurance as well as easy and sure operation:
\square all circuit-breaker indications and information remain visible and accessible,
including trip-unit settings and indications;
■ suitability for isolation is maintained and padlocking remains possible;

- double insulation of the front face.

Applications

■ local motor-driven operation, centralised operation, automatic distribution control - normal/standby source changeover or switching to a replacement source to optimise energy costs
■ load shedding and reconnection to optimise energy costs

- synchrocoupling.

Automatic operation
■ circuit-breaker ON and OFF controlled by two impulse-type or maintained control signals
■ automatic spring charging following voluntary tripping (by MN or MX), with standard wiring
■ mandatory manual reset following tripping due to an electrical fault.

Manual operation

■ transfer to manual mode using a switch (9) with possibility of remote mode indication
■ circuit-breaker ON and OFF controlled by 2 pushbuttons

- recharging of stored-energy system by pumping the lever 9 times
- padlocking in OFF position.

Installation and connection

All installation (fixed, plug-in/withdrawable) and connection possibilities are maintained.
Motor-mechanism module connections are made behind its front cover to integrated terminals, for cables up to $2.5 \mathrm{~mm}^{2}$.

Accessories

■ keylock for locking in OFF position
■ operations counter for the Compact NS400 and NS630, indicating the number of ON and OFF cycles. The counter must be installed on the front of the motormechanism module.

Characteristics		
Telecommande		MT100 to MT630
Response time (ms)	opening closing	$\begin{aligned} & <600 \\ & <80 \end{aligned}$
Rate	cycles/minute max.	4
Control voltage (V)	DC	$\begin{aligned} & 24 / 30-48 / 60 \\ & 110 / 130-250 \\ & \hline \end{aligned}$
	$\overline{\text { AC 50/60 Hz }}$	$\begin{aligned} & 48(50 \mathrm{~Hz})-110 / 130 \\ & 220 / 240-380 / 440 \\ & \hline \end{aligned}$
Consumption	$\begin{array}{ll} \hline \text { DC (W) } & \begin{array}{l} \text { opening } \\ \text { closing } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \leqslant 500 \\ & \leqslant 500 \end{aligned}$
	$\begin{array}{ll} \hline \text { AC (VA) } & \begin{array}{l} \text { opening } \\ \text { closing } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \leqslant 500 \\ & \leqslant 500 \end{aligned}$

Electrical endurance

Circuit breaker + motor-mechanism module, in thousands of operations
(IEC 60947-2), at 440 V.

Compact NS630L with voltage-presence indicator

Compact NS630H with current-transformer module

Compact NS250L with ammeter module

Indications and measurement

Voltage presence indicator

The indicator detects and indicates that circuit breaker terminals are supplied with power.

Installation

■ in the long or short terminal shields, via the knockouts
■ not compatible with the motor-mechanism module

- upstream or downstream of the circuit breaker
- degree of protection IP40, IK04.

Electrical characteristics
Operates on all networks with voltages ranging from 220 to 550 V AC.

Current-transformer module

This module enables direct connection of a measurement device such as an ammeter or a Dialpact power meter (not supplied).

Installation

- directly on the downstream circuit-breaker terminals
- degree of protection IP40, IK04

■ class II insulation between front and the power circuits

- connection to 6 integrated terminals for cables up to $2.5 \mathrm{~mm}^{2}$.

Electrical characteristics

- transformer with 5 A secondary winding.

■ accuracy class 3 for the following output-power consumptions:

- rating 100 A : 1.6 VA
- rating $150 \mathrm{~A}: 3 \mathrm{VA}$
- rating $250 \mathrm{~A}: 5 \mathrm{VA}$
- rating 400/630A: 8 VA.

Ammeter and Imax ammeter modules

Ammeter module

Measures and displays (dial-type ammeter) the current of each phase (selection of phases by 3-position switch in front).

Imax ammeter module

Measures and displays (dial-type ammeter) the maximum current flowing in the middle phase. The Imax value can be reset on the front.

Installation

■ identical for both types of ammeter module

- directly on the downstream circuit-breaker terminals
- ammeter clips into module in any of four 90° positions, i.e. can be installed of devices mounted both vertically and horizontally
- degree of protection IP40, IK04
- class II insulation between front and the power circuits.

Electrical characteristics

- ammeter module: accuracy clas 4.5
- Imax ammeter module:
- accuracy $\pm 6 \%$
\square maximum currents are displayed only if they last at least 15 minutes.

Compact NS250H with insulation-monitoring module

Compact NS equipped with communicating auxiliary contacts and motor-mechanism module

Insulation-monitoring module

This module detects and indicates an insulation drop on a load circuit (TN-S or TT systems).
Operation is identical to that of a Vigi module, but without circuit-breaker tripping. Indication by a red LED in front.
An auxiliary contact may be installed for remote insulation-drop indications.

Installation

- directly on the downstream circuit-breaker terminals
- degree of protection: IP40, IK04
- double insulation of the front face.

Electrical characteristics

■ settings: 100, 200, 500 and 1000 mA

- accuracy: $-50+0 \%$
\square time delay following drop: 5 to 10 seconds
■ AC-system voltage: 200 to 440 V AC and 440 to 550 V AC.

Communication

Communicating versions of the auxiliary contacts and the motor-mechanism module also exist for integration in a Digipact communications system. They simply replace the standard electrical auxiliaries.
Using the STR53UE and STR43ME trip units equipped with the COM communications option, it is possible to transmit data to Digipact modules: \square settings

- rms values of phase and neutral currents
- current of the most heavily loaded phase
- overload alarm in progress
- tripping cause (overload, short-circuit, etc.).

Withdrawable Compact NS equipped with communicating auxiliary contacts

Installation, connection and accessories
Compact NS100 to 630 (cont.)

Compact NS with toggle locked using a removable device

Locking systems

Locking in the OFF position guarantees isolation as per IEC 60947-2.
Padlocking systems can receive up to three padlocks with hasp diameters ranging
from 5 to 8 mm (padlocks not supplied).

Control device	Function	Means	Required accessories
Toggle	lock in OFF position	padlock	removable device
	lock in OFF or ON position	padlock	fixed device
Direct rotary handle	ock in OFF position	padlock	
	keylock	locking device + keylock	
MCC rotary handle	lock in OFF position	padlock	
Rotary handle	lock in OFF position	padlock	
Extended rotary handle	lock in OFF position, door opening prevented	keylock	keylock
Motor mechanism	lock in OFF position, motor mechanism locked out	padlock	keylock

Locking of the toggle using a removable device

Locking of the toggle using a fixed device

Locking of the rotary handle using a padlock or a keylock.

Heavy-duty insulating individual enclosure for Compact NS

Individual enclosures

Compact and Vigicompact NS devices with two, three or four poles may be installed in individual enclosures.
All fixed, front connections are possible, except right-angle and edgewise terminal extensions. Spreaders may be installed in the enclosures intended for Interpact Compact and Vigicompact NS250 to 630 devices.
There are two models of enclosures:
■ heavy-duty metal individual enclosure, with:
a metal enclosure
\square door with keylock and cut-out for rotary handle
\square direct rotary handle (CNOMO, IP 55)
\square device mounting plate
\square removable plate (without holes) for cable entry through bottom.
\square heavy-duty insulating individual enclosure, with:
\square insulating enclosure

- transparent cover, screwed, lead sealable, with cut-out for rotary handle - extended rotary handle
a device mounting plate
\square removable plates (without holes) for cable entry through bottom and/or top.

Dimensions (W x H x D in mm)

\square metal enclosures:

- Compact NS100 to 160:
- Vigicompact NS100 to 160:
- Compact NS250 to 400:
- Compact NS630:
- Vigicompact NS250 to 630:

■ insulating enclosures:
-Compact/Vigicompact NS100 to 160: $270 \times 360 \times 235$

- Compact NS250:
- Compact NS400 to 630:
- Vigicompact NS250 to 630:
$300 \times 400 \times 200$
$400 \times 500 \times 200$
$400 \times 600 \times 200$
$600 \times 800 \times 275$
$600 \times 800 \times 275$
$270 \times 360 \times 235$
$270 \times 540 \times 235$
$360 \times 720 \times 235$
$360 \times 720 \times 235$

Installation, connection and accessories

 Compact NS100 to 630
Escutcheons

Escutcheons are an optional feature mounted on the switchboard door. They increase the degree of protection to at least IP40, IK07.

Front-panel escutcheons for toggle and Vigi module (NSA160). Secures to the panel, from the front.

Toggle cover

- degree of protection IP43,

IK07

- fits on the front of the circuit breaker.

Front-panel escutcheon for rotary handle.
Secures to the panel by four screws, from the front.

Front-panel escutcheons for toggle and Vigi module (NSA160). Secures to the panel, from the front.

Protection collar for toggle and Vigi module

Protection collars maintain the degree of protection, whatever the position of the device (connected, disconnected).
■ front-panel escutcheons are mandatory (same as those for rotary handles and ammeter modules). ■ collars are mounted on the device using two screws. - escutcheons are attached to the switchboard.

- a toggle extension is supplied with the collar.

For the insulation-monitoring module, use the same elements as for the Vigi module.
Front-panel escutcheons for motor mechanism,
 rotary handles, ammeter modules
Same as for fixed devices.

Outgoing-circuit identification

Compact NS100 to 630 devices come with clip-in labels for hand-written indications. It is also possible to use pre-printed Telemecanique labels part number AB1-** : - Compact NS100 to 250: 8 digits
\square Compact NS400 to 630: 16 digits.

Identification accessories

Sealing accessories

This option includes the elements required to fit lead seals to prevent: - front removal

- rotary-handle removal
- opening of the motor-mechanism module
- access to auxiliaries

■ access to trip-unit settings

- trip-unit removal
- access to earth-fault protection settings

■ terminal-shield removal
■ access to power connections.

Sealing accessories

Functions
and characteristics

Installation, connection
and accessories
Compact NS630b to 1600
(fixed version)

Compact NS630 to 1600 (withdrawable version)

Spreader

Escutcheon

Transparent cover

Functions
and characteristics

Installation, connection
and accessories
Compact NS630b to 1600

Installation

Fixed configuration

Compact NS630b to 1600 circuit breakers may be installed vertically, horizontally or flat on their back without any derating of characteristics.

Mounting on a backplate

Mounting on rails

The withdrawable configuration makes it possible to:

- extract and/or rapidly replace the circuit breaker without having to touch connections;
 later date.

Withdrawable Compact NS80OH

Withdrawable configuration
Compact NS630b to 1600 circuit breakers should be installed vertically only.

Mounting on a backplate

Device on mounting plate

Rear mounting on rails

Device on rails

The device may be in one of four positions on the chassis:

■ connected position. The power circuits

 and auxiliary contacts are all connected - test position. The power circuits are disconnected. The auxiliary contacts are still connected and the device can be operated electrically - disconnected position. The power circuits and auxiliary contacts are all disconnected, however the device is still mounted on the chassis. It can be operated manually (ON, OFF, "push to trip").- removed position. All circuits are disconnected. The device simply rests on the chassis rails and can be removed.

Connected

Test

Disconnected

Removed

The multifunctional chassis for Compact NS630b to 1600 devices is particularly suited for incoming circuit breakers. Features include:

- device connection and disconnection through a door, using a crank that can be stored in the chassis
- three positions (connected, test and disconnected) that are indicated:
- locally by a position indicator
\square remotely by carriage switches (3 for the connected position, 2 for the disconnected position and 1 for the test position)
- circuit-breaker ON / OFF commands through a switchboard front panel.

Locking

There are extensive locking possibilities:

- chassis locking in connected, disconnected and test positions using three padlocks and two keylocks, on the switchboard front panel
- door interlock (inhibits door opening with breaker in connected position)
- racking interlock (inhibits racking with door open)
- locking in each of the connected, disconnected and test positions during device connection or disconnection. Continuation to the next position requires pressing a release button to free the crank.

Other safety function

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics.

1 mismatch protection
2 door interlock
3 racking interlock
4 keylock locking
5 padlock locking
6 position indicator
7 chassis front plate (accessible with cubicle door closed)
8 crank entry
9 reset button
10 crank storage

Functions
and characteristics

Installation, connection
and accessories
Compact NS630b to 1600 (cont.)

Compact NS630b to 1600 fixed and withdrawable devices can be connected using:
■ horizontal or vertical rear connections

- front connections
- mixed connections
- a combination of front and rear connections.

Types of connection

Front connection

Rear connection

Horizontal

Vertical

Simply turn a horizontal rear connector 90° to make it a vertical connector.

Combination of front and rear connections

[^6]
Front connection of fixed devices

童

Special sets of connectors and terminal shields may be used to connect up to four $240 \mathrm{~mm}^{2}$ copper or aluminium cables for each phase．

Bars

Fixed，front－connection Compact NS630b to 1600 devices are equipped with terminals comprising captive screws for direct connection of bars．
Other connection possibilities for bars include vertical－ connection adapters for edge－wise bars and spreaders to increase the pole pitch to 120 mm ．

Vertical－connection adapters

Spreaders．

Bare cables

Cables with lugs

Terminal extensions for cables with lugs are combined with the vertical－connection adapters．
One to four cables with crimped lugs（ $300 \mathrm{~mm}^{2}$ ）may be connected
To ensure stability，spacers must be positioned between the terminal extensions．

Terminal extensions for cables with lugs

Functions

and characteristics

Installation, connection and accessories
 Compact NS630b to 1600 (cont.)

Rear connection of fixed devices

Bars

Fixed, rear-connection Compact NS630b to 1600 devices equipped with horizontal or vertical connectors may be directly connected to flat or edge-wise bars, depending on the position of the connectors. Spreaders are available to increase the pole pitch to 120 mm .

Spreaders.

Cables with lugs

Terminal extensions enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions

Terminal extensions for cables with lugs

Front connection of withdrawable devices

Bars

誌
畄

Cables with lugs

Terminal extensions enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions.

Terminal extensions for cables with lugs

Rear connection of withdrawable devices

Bars

Withdrawable, rear-connection Compact NS630b to 1600 devices equipped with horizontal or vertical connectors may be directly connected to flat or edgewise bars, depending on the position of the connectors. Spreaders are available to increase the pole pitch to 120 mm .

Spreaders

Cables with lugs

Terminal extensions enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions.

Terminal extensions for cables with lugs

Compact NS equipped with terminal shields

Insulation of live parts

Terminal shields

Mounted on fixed, front-connection devices, terminal shields insulate power-connection points, particularly when cables with lugs are used

Phase barriers

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not.
Barriers are installed vertically between front or rear connection terminals.

Phase barriers

Safety shutters

Safety shutters

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20). When the device is removed from its chassis, no live parts are accessible.
The shutters can be padlocked (padlock not supplied) to:

- prevent connection of the device

■ lock the shutters in the closed position.

Connection of electrical auxiliaries

Fixed devices

Connections are made directly to the auxiliaries once the front has been removed. Wires exit the circuit breaker through a knock-out in the top.

Withdrawable devices

Auxiliary circuits are connected to terminal blocks located in the top part of the chassis.
The auxiliary terminal block is made up of a fixed and moving part. The two parts are in contact when the device is in the test and connected positions.

OF, SD and SDE changeover contacts

All the auxiliary contacts opposite are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

Indication contacts

Contacts installed in the device

Changeover contacts are used to remote circuit-breaker status information and can thus be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

■ OF (open/closed) - indicates the position of the main circuit breaker contacts
\square SD (trip indication) - indicates that the circuit breaker has tripped due to:
-an overload

- a short-circuit
- an earth fault.
- operation of a voltage release
- operation of the "push to trip" button
adisconnection when the device is ON.
Returns to de-energised state when the circuit breaker is reset.
■ SDE (fault indication) - indicates that the circuit breaker has tripped due to: -an overload
\square a short-circuit
- an earth fault.

Returns to de-energised state when the circuit breaker is reset.

- CAF / CAO (early-make or early-break function) - indicates the position of the rotary handle. Used in particular for advanced opening of safety trip devices (early break) or to energise a control device prior to circuit-breaker closing (early make).

Installation

■ OF, SD and SDE functions - a single type of contact provides all these different indication functions, depending on the position where it is inserted in the device.
The contacts clip into slots behind the front cover of the circuit breaker.
■ CAF / CAO function - the contact fits into the rotary-handle unit (direct or extended).
Electrical characteristics of the OF/SD/SDE/CAF/CAO auxiliary contacts

Contacts	Standard			Low level		
Rated thermal current (A)	6			5		
Minimum load	100 mA at 24 V			1 mA at 4 V		
Utilisation cat. (IEC 60947-5-1)	AC12 AC15	DC12	DC14	AC12 AC15	DC12	DC14
Operational 24 V	66	2.5	1	53	5	1
current (A) 48 V	66	2.5	0.2	53	2.5	0.2
110 V	65	0.8	0.05	52.5	0.8	0.05
220/240 V	64	-	-	$5 \quad 2$	-	-
250 V	- -	0.3	0.03	5	0.3	0.03
$380 / 440 \mathrm{~V}$	63	-	-	51.5	-	-
660/690 V	60.1	-	-	- -	-	-

Connected, disconnected, test position carriage switches

A single type of changeover contact can be mounted optionally on the chassis to indicate, depending on the slot where it is installed:
\square the connected (CE) position

- the disconnected (CD) position. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached - the test (CT) position. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Installation

■ contacts for the connected (CE), disconnected (CD) and test (CT) positions clip into the upper front section of the chassis.
Electrical characteristics of the CE/CD/CT auxiliary contacts

Contacts	Standard		Low level		
Rated thermal current (A)	8		5		
Minimum load	100 mA at 24 V		1 mA at 4 V		
Utilisation cat. (IEC 60947-5-1)	AC12 AC15	DC12 DC14	AC12 AC15	DC12	DC14
Operational 24 V	86	2.51	53	5	1
current (A) 48 V	86	2.50 .2	53	2.5	0.2
110 V	85	0.80 .05	$5 \quad 2.5$	0.8	0.05
220/240 V	84	- -	52	-	-
250 V	- -	0.30 .03	5	0.3	0.03
$380 / 440 \mathrm{~V}$	83	- -	51.5	-	-
660/690 V	60.1	- -	- -	-	-

Compact NS with a direct rotary handle

Rotary handles

There are two types of rotary handle:

- direct rotary handle
- extended rotary handle.

There are two models:

- standard with a black handle
- VDE with a red handle and yellow front for machine-tool control.

Direct rotary handle

Degree of protection IP 40, IK 07.
The direct rotary handle maintains:

- visibility of and access to trip unit settings
- suitability for isolation

■ indication of the three positions O (OFF), I (ON) and tripped

- access to the "push to trip" button

■ circuit breaker locking capability in the OFF position by one to three padlocks, shackle diameter 5 to 8 mm (not supplied).
It replaces the circuit-breaker front cover.
Accessories transform the standard direct rotary handle for the following situations:

- motor control centre (MCC) switchboards:
\square door opening disabled when the circuit breaker is ON;
\square circuit-breaker closing is disabled if the door is open;
■ a higher degree of protection (IP 43, IK 07)
■ machine-tool control, complying with CNOMO E03.81.501, IP 54, IK 07.

Extended rotary handle

Degree of protection IP 55, IK 07.
This handle makes it possible to operate circuit breakers installed inside switchboards, from the switchboard front.

It maintains

- suitability for isolation
- indication of the three positions O (OFF), I (ON) and tripped
- access to trip unit settings, when the switchboard door is open

■ circuit breaker locking capability in the OFF position by one to three padlocks, shackle diameter 5 to 8 mm (not supplied).
The door cannot be opened if the circuit breaker is ON or locked.
The extended rotary handle is made up of:

- a unit that replaces the front cover of the circuit breaker (secured by screws)

■ an assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally.
■ an extension shaft that must be adjusted to the distance. The min/max distance
between the back of circuit breaker and door is $218 / 605 \mathrm{~mm}$.

Manually operated circuit breakers may be equipped with an MX shunt release, an MN undervoltage release or a delayed undervoltage release (MN + delay unit). Electrically operated circuit breakers are equipped as standard with a remoteoperating mechanism to remotely open or close the circuit breaker. An MX shunt release or an MN undervoltage release (instantaneous or delayed) may be added.

Remote tripping

This function opens the circuit breaker via an electrical order. It is made up of a shunt release (MX), or an undervoltage release (MN) or a delayed undervoltage release (MN + delay unit).
The delay unit, installed outside the circuit breaker, may be disabled by an emergency power OFF button to obtain instantaneous opening of the circuit breaker.
Wiring diagram for the remote-tripping function

Voltage releases (MX)
When energised, the MX voltage release instantaneously opens the circuit breaker. A continuous supply of power to the MX locks the circuit breaker in the OFF position.

Characteristics

Power supply V AC 50/60 Hz	24/30-48/60-100/130-200/250-240/277-380/480-500/550
V DC	$1-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.7 to 1.1 Un
Continuous locking function	0.85 to 1.1 Un
Consumption (VA or W)	pick-up: 200 hold: 4.5
Circuit-breaker response $50 \mathrm{~ms} \pm 10$ time at Un	

Instantaneous voltage releases (MN)
The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If the release is not supplied, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuitbreaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

Characteristics

Power supply V AC 50/60 Hz	$24 / 30-48 / 60-100 / 130-200 / 250-380 / 480-500 / 550$	
	V DC	$24 / 30-48 / 60-100 / 130-200 / 250$
Operating	opening	0.35 to 0.7 Un
threshold	closing	0.85 Un
Consumption (VA or W)	pick-up: 200 - hold: 4.5	
Circuit-breaker response	$90 \mathrm{~ms} \pm 5$	
time at Un		

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics		
Power supply	non-adjustable	$100 / 130-200 / 250$
V AC $50 / 60 \mathrm{~Hz} /$ DC	adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$
Operating threshold	opening	0.35 to 0.7 Un
	closing	0.85 Un
Consumption (VA or W)		pick-up: 200 - hold: 4.5
Circuit-breaker response	adjustable	$0.5 \mathrm{~s}-0.9 \mathrm{~s}-1.5 \mathrm{~s}-3 \mathrm{~s}$
time at Un	non-adjustable	0.25 s

Installation, connection and accessories
Compact NS630b to 1600
(cont.)

Electrically operated circuit breakers are equipped as standard with a remoteoperating mechanism.
Two solutions are available for electrically operated:

■ a point-to-point solution

- a bus solution with the COM
communication option.

Remotely controlled Compact NS circuit breaker

Electrically operated circuit breaker

The remote-operating mechanism is used to remotely open and close the circuit breaker. It is made up of a gear motor equipped with an opening release and a closing release.
A remote-operation function is generally combined with:

- device ON / OFF indication (OF)

■ "fault-trip" indication (SDE).
Wiring diagram of a point-to-point electrically operated

Wiring diagram of a bus-type electrically operated

remote-operating
mechanism

In the event of simultaneous opening and closing orders, the mechanism discharges without any movement of the main contacts.
In the event of maintained opening and closing orders, the standard remote ON / OFF system provides an anti-pumping function by blocking the main contacts in open position.

Functions
and characteristics

Installation, connection and accessories Compact NS630b to 1600 (cont.)

Locks on manually operated devices

Locking in the OFF position guarantees isolation as per IEC 60947-2.
Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied).

Control device	Function	Means	Required accessories
Toggle	lock in OFF position	padlock	removable device
	lock in OFF or ON position	padlock	fixed device
Direct rotary handle	lock in	padlock	
	- OFF position - OFF or ON position	keylock	locking device + keylock
CNOMO direct rotary handle	lock in	padlock	
	- OFF position - OFF or ON position	keylock	locking device + keylock
Extended rotary handle Prolongée	lock in OFF position, door opening prevented	padlock keylock	keylock

Locks on electrically operated devices

Access to pushbuttons protected by transparent cover

Pushbutton locking using a padlock

Pushbutton locking using a keylock

OFF position locking using a keylock

1 reset of mechanical
tripping indicator
2 opening pushbutton
3 OFF position locking
4 closing pushbutton
5 indicator for position of the springs
6 pushbutton locking
7 indicator for position of the
main contacts
8 operation counter

Pushbutton locking

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button. The locking device is often combined with a remote-operating mechanism.
The pushbuttons may be locked using either:

- three padlocks (not supplied)
- lead seal
- two screws

Device locking in the OFF position

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:
■using padlocks (one to three padlocks, not supplied)
■ using a keylock (supplied).
Keys may be removed only when locking is effective (Profalux or Ronis type locks).
The keylocks are available in any of the following configurations:
■ one keylock
■ one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device.
A locking kit (without lock) is available for installation of a keylock (Ronis, Profalux, Kirk or Castell).

Locks on the chassis

mismatch protection
2 door interlock
racking interlock
keylock locking
padlock locking
6 position indicator
7 chassis front plate (accessible with cubicle door closed)
8 crank entry
9 reset button
10 crank storage

Disconnected position locking by padlocks

Disconnected position locking by keylocks

Mismatch protection

Disconnected position locking

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the disconnected position in two manners:
■ using padlocks (standard), up to three padlocks (not supplied)

- using keylocks (optional), one or two different keylocks are available.

Profalux and Ronis keylocks are available in different options:

- one keylock

■ one keylock mounted on the device + one identical keylock supplied separately, using the same key, for interlocking with another device

- one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately, for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Connected, disconnected and test position locking

The connected, disconnected and test positions are shown by an indicator.
The exact position is obtained when the racking handle blocks.
A release button is used to free it.
On request, the disconnected position locking system may be modified to lock the circuit breaker in any of the three positions, connected, disconnected and test.

Door interlock

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in connected or test position. It the breaker is put in the connected position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock

This device prevents insertion of the crank when the cubicle door is open (device cannot be connected).

Mismatch protection

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

"Device" communications module

Batibus "chassis" communication module

Communication

The COM communication option is required for integration of the circuit breaker or switch-disconnector in a supervision system.
Compact NS630b to 1600 uses the Digipact or ModBus communications protocol for full compatibility with the Digipact and SMS Powerlogic electrical-installation management systems.
An external gateway is available for communication on other networks:

- Profibus
- Ethernet, etc.

COM communication option

The COM communication option is compatible with all Compact NS630b to 1600 circuit breakers and switch-disconnectors.
For fixed devices, the COM option is made up of a communication module installed in the device and supplied with its set of sensors (OF, SDE ,PF and CH contacts) and its kit for connection to the remote-operating mechanism.
For withdrawable devices, it is made up of:
■ a communication module installed in the device and supplied with its set of sensors (OF, SDE, PF and CH contacts) and its kit for connection to the remoteoperating mechanism

- a communication module installed on the chassis and supplied with its set of sensors (CE, CD and CT contacts) and its kit for connection to the "device" communication module.
Each installed device has an address that is assigned via the keypad of the control unit (ModBus) or remotely (Batibus). The address of a withdrawable device is assigned to the chassis which keeps the same address if the device is replaced.
Status indication by the COM option is independent of the device indication contacts. These contacts remain available for conventional uses.

"Device" communication module

This module is independent of the control unit. Installed in the device, behind the control unit, it receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
The module connects to:
■ a set of sensors that detect device status
\square a set of actuators for device control.
"Chassis" communication module
Installed on the chassis, this module makes it possible to address the chassis and to maintain the address when the circuit breaker is in the disconnected position.
The module connects to a set of sensors that detect and communicate the position (connected, disconnected, test) of the device on the chassis.

Remote-operating mechanism

A bus link is used to transmit remote ON/OFF orders to the circuit breaker. The remote-tripping function (MX or MN) is independent of the communication option.

Communication architecture

1 "device" communication module "chassis" communication module OF, SD, SDE "device" sensors

4 CE, CD and CT "chassis" sensors
5 remote-operating mechanism
6 Digipact communication bus

Compact NS630b to 1600 communication

The COM communication option is compatible with all types of Micrologic control units to:

- identify the device
- indicate status conditions
- control the device

With Micrologic A control units, the COM option also transmits:

- device settings
- current values in the phases and neutral
- maximum current values.

An infra-red link transmits data between the communication module and Micrologic A control units.

Device identification	Switch-disconnector	Circuit breaker
Address	\square	■
Type of device		\square
Type of control unit		\square
Type of long-time rating plug		\square
Status indications		
ON/OFF	\square	■
Connected/disconnected/test position	\square	\square
Fault trip		-
Controls		
Opening / closing	-	\square
Settings		Micrologic A
Reading of settings on adjustment dials		■
Programmable alarms and protection		\square
Current measurements (11, $12, \mathrm{I} 3, \mathrm{IN}$, maximum) Type of fault		\square
		■

Note

See the description of the Micrologic control units for further details on protection, alarms and measurements.

Transparent cover
Auxiliary terminal shield

Operation counter

Escutcheon

Functions
and characteristics

Installation, connection
and accessories
Compact NS1600b to 3200 (fixed version)

Fixed Compact NS

Installation

Fixed circuit breakers

Compact NS1600b to 3200 circuit breakers should be installed vertically only.

Mounting on rails

Connection

Front connection

NS1600 to 2500

NS3200

Bars

Bars may be directly connected to the terminals of Compact NS1600b to 3200 circuit breakers.
NS1600b to 2500

NS1600b to 2500 with connection for vertical-connection adapter or NS3200

Functions

and characteristics

Installation, connection and accessories
Compact NS1600b to 3200 (cont.)

OF, SD and SDE changeover contacts

All the auxiliary contacts opposite are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

Indication contacts

Contacts installed in the device

Changeover contacts are used to remote circuit-breaker status information and can thus be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

■ OF (open/closed) - indicates the position of the main circuit breaker contacts
\square SD (trip indication) - indicates that the circuit breaker has tripped due to:
-an overload

- a short-circuit
- an earth fault
- operation of a voltage release
- operation of the "push to trip" button

Returns to de-energised state when the circuit breaker is reset.
■ SDE (fault indication) - indicates that the circuit breaker has tripped due to:
-an overload

- a short-circuit
- an earth fault.

Returns to de-energised state when the circuit breaker is reset.

Installation

■ OF, SD and SDE functions - a single type of contact provides all these different indication functions, depending on the position where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker.

Electrical characteristics of the OF/SD/SDE auxiliary contacts

Contacts	Standard				Low level			
Rated thermal current (A)	6				5			
Minimum load	100 mA at 24 V				1 mA at 4 V			
Utilisation category (IEC 60947-5-1)	AC12	AC15	DC12	DC14	AC12	AC15	DC12	DC14
Operational 24 V	6	6	2.5	1	5	3	5	1
current (A) $\quad 48 \mathrm{~V}$	6	6	2.5	0.2	5	3	2.5	0.2
110 V	6	5	0.8	0.05	5	2.5	0.8	0.05
220/240 V	6	4	-	-	5	2	-	-
250 V	-	-	0.3	0.03	5	-	0.3	0.03
$380 / 440 \mathrm{~V}$	6	3	-	-	5	1.5	-	-
660/690 V	6	0.1	-	-	-	-	-	-

Compact NS1600b to 3200 circuit breakers may be equipped with an MX shunt release, an MN undervoltage release or a delayed undervoltage release (MN + delay unit).

Remote tripping

This function opens the circuit breaker via an electrical order. It is made up of a shunt release (MX), or an undervoltage release (MN) or a delayed undervoltage release (MN + delay unit).
The delay unit, installed outside the circuit breaker, may be disabled by an emergency power OFF button to obtain instantaneous opening of the circuit breaker.
Wiring diagram for the remote-tripping function

Voltage releases (MX)
When energised, the MX voltage release instantaneously opens the circuit breaker. A continuous supply of power to the MX locks the circuit breaker in the OFF position.

Characteristics

Power supply V AC 50/60 Hz	$24 / 30-48 / 60-100 / 130-200 / 250-240 / 277-380 / 480-500 / 550$
V DC	$1-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.7 to 1.1 Un
Continuous locking function	0.85 to 1.1 Un
Consumption (VA or W)	pick-up: 200 hold: 4.5
Circuit-breaker response $50 \mathrm{~ms} \pm 10$ time at Un	

Instantaneous voltage releases (MN)
The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If the release is not supplied, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuitbreaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

Characteristics

Power supply V AC 50/60 Hz	$24 / 30-48 / 60-100 / 130-200 / 250-380 / 480-500 / 550$
	V DC

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics		
Power supply	non-adjustable	$100 / 130-200 / 250$
V AC $50 / 60 \mathrm{~Hz}$ /DC	adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$
Operating threshold	opening	0.35 to 0.7 Un
	closing	0.85 Un
Consumption (VA or W)		pick-up: 200 - hold: 4.5
Circuit-breaker response	adjustable	$0.5 \mathrm{~s}-0.9 \mathrm{~s}-1.5 \mathrm{~s}-3 \mathrm{~s}$
time at Un	non-adjustable	0.25 s

Functions and characteristics

Installation, connection and accessories
Compact NS 1600 b to 3200 (cont.)

"device" communications module

Communication

The COM communication option is required for integration of the circuit breaker or switch-disconnector in a supervision system.
Compact NS1600b to 3200 uses the Digipact or ModBus communications protocol for full compatibility with the Digipact and SMS Powerlogic electrical-installation management systems.
An external gateway is available for communication on other networks:

- Profibus
- Ethernet, etc.

COM communication option

The COM communication option is compatible with all Compact NS1600b to 3200 circuit breakers and switch-disconnectors.
It is made up of a communication module installed in the device and supplied with its set of sensors (OF, SDE ,PF and CH contacts).
Each installed device has an address that is assigned via the keypad of the control unit (ModBus) or remotely (Batibus).
Status indication by the COM option is independent of the device indication contacts. These contacts remain available for conventional uses.

"Device" communication module

This module is independent of the control unit. Installed in the device, behind the control unit, it receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
The module connects to a set of sensors that detect device status.

Communication architecture

[^7]
Compact NS1600b to $\mathbf{3 2 0 0}$ communication

The COM communication option is compatible with all types of Micrologic control units to:
■ identify the device
\square indicate status conditions
With Micrologic A control units, the COM option also transmits:
\square device settings
■ current values in the phases and neutral
■ maximum current values.
An infra-red link transmits data between the communication module and Micrologic A control units.

Device identification	Switch-disconnector	Circuit breaker
Address	■	■
Type of device		\square
Type of control unit		\square
Type of long-time rating plug		\square
Status indications		
ON/OFF	\square	■
Connected/disconnected/test position	\square	\square
Fault trip		-
Controls		
Opening / closing	-	■
Settings		Micrologic A
Reading of settings on adjustment dials		\square
Programmable alarms and protection		\square
Current measurements (11, I2, I3, IN, maximum)		\square
Type of fault		\square
Note. See the description of the Micrologic contro measurements.	rol units for further details	rotection, alarms and

Functions
and characteristics

Installation, connection and accessories
 Compact NS1600b to 3200 (cont.)

Device locking

Locking in the OFF position guarantees isolation as per IEC 60947-2.
Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied).

Control device	Function	Means	Required accessories
Toggle	lock in OFF position	padlock	removable device
	lock in OFF or ON position	padlock	fixed device

Installation accessories

Toggle locked using a removable device and a padlock

Escutcheon (CDP)

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP 40

Blanking plate (OP) for escutcheon

Used with the escutcheon, this option closes off the door cutout of a cubicle not yet equipped with a device

Compact NS100 to 630 test equipment for STR electronic trip units

Mini test kit

Portable test kit

Mini test kit

The mini test kit is a portable unit requiring no external power supply, used to check operation of the electronic trip unit and circuit-breaker tripping. It connects to the test connector on the front of the circuit breaker. Required power source: five 9 V alkaline batteries (not supplied).

Portable test kit

The portable test kit is used to check all aspects of the protection functions:

- long time protection

■ short time protection
■instantaneous protection
■earth-fault protection.
Required power source: 110 or $220 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$.

Compact NS630b to 3200 test equipment for Micrologic control units

Portable test kit

Mini test kit

The autonomous hand-held mini test kit may be used to:
\square check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit
■ supply power to the control units for settings via the keypad when the circuitbreaker is open (Micrologic P and H control units).
Required power source: standard LR6-AA battery.

Portable test kit

The portable test kit is available in two versions:

- the autonomous version with built-in keypad and display
- the complete version controlled by a PC.

The autonomous version may be used to check:
\square the mechanical operation of the circuit breaker
\square the electrical continuity of the connection between the circuit breaker and the control unit
$■$ operation of the control unit:

- display of settings
- operating tests on the ASIC electronic component \square automatic and manual tests on protection functions \square test on the zone-selective interlocking (ZSI) function \square inhibition of the earth-fault protection \square inhibition of the thermal memory.
The complete version controlled by a PC offers in addition:
- comparison of the real tripping curve with the catalogue curves available on the PC
- reset of the M2C / M6C contacts and indications
- reading and modification of settings and counters
- reading of histories and logs
- waveform capture
- analysis of harmonics.

Note.

These test kits are identical for all Compact NS630b to 3200 circuit breakers and all Masterpact NT and NW circuit breakers.
Presentation 1
Functions and characteristics 11
Operating conditions 134
Installation in switchboards 135
Power supply and weights 135
Safety clearances and minimum distances 136
Installation example 138
Door interlock for Compact NS630b to 1600 139
Connection of MN and MX voltage releases 140
for Compact NS630b to 3200
Power connections for Compact NS80H-MA 141
NSC100N, NSA160
Power connections for Compact NS100 to 630 142
Connection of insulated bars or cables with lugs 142
Connection of bare or cables 143
Insulation of live parts 144
Power connections for Compact NS630b to 3200 145
Sizing of bars 147
Recommended drilling dimensions 149,150
Temperature derating 151
Power dissipation / Resistance 153
Dimensions, volumes 155
Connection 195
Electrical diagrams 211
Complementary technical information 241

Altitude derating
Altitude does not significantly affect circuit-breaker characteristics up to 2000 m . Above this altitude, it is necessary to take into account the decrease in the dielectric strength and cooling capacity of air.
The following table gives the corrections to be applied for altitudes above 2000 metres. The breaking capacities remain unchanged.

Compact NS80 to $\mathbf{6 3 0}$				
Altitude (m)	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
Dielectric resistance voltage (V)	3000	2500	2100	1800
Average insulation level (V)	750	700	600	500
Maximum utilisation voltage (V)	690	550	480	420
Average thermal current (A) at $\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$1 \times \ln$	$0.96 \times \ln$	$0.93 \times \ln$	$0.9 \times \ln$
Compact NS630b to $\mathbf{3 2 0 0}$				
Altitude (m)	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
Dielectric resistance voltage (V)	3500	3150	2500	2100
Average insulation level (V)	750	750	700	600
Maximum utilisation voltage (V)	690	590	520	460
Average thermal current (A) at $\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$1 \times \ln$	$0.99 \times \ln$	$0.96 \times \ln$	$0.94 \times \ln$

Vibrations

Compact NS devices resist electromagnetic or mechanical vibrations.
Tests are carried out in compliance with standard IEC 68-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):
■ $2 \rightarrow 13.2 \mathrm{~Hz}$: amplitude $\pm 1 \mathrm{~mm}$
$■ 13.2 \rightarrow 100 \mathrm{~Hz}$: constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts

Electromagnetic disturbances

Compact NS devices are protected against:
■ overvoltages caused by devices that generate electromagnetic disturbances

- overvoltages caused by an atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
- devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- electrostatic discharges produced by users.

Compact NS devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:
■ IEC 60947-2, appendix F

- IEC 60947-2, appendix B (trip units with earth-fault function)

The above tests guarantee that:

- no nuisance tripping occurs
- tripping times are respected.

Installation in switchboards

Power supply and weights

Power supply
Compact NS circuit breakers can be supplied from either the top or the bottom without any reduction in performance. This capability facilitates connection when installed in a switchboard.

Weights

		Circuit breaker	Plug-in base	Chassis	Vigi module	Positive contact indication (Interpact INV)	Motor-mechanism module
NS80H-MA	3P/3D	1.09					
NSC100N	3P/3D	1			1.5		
	4P/4D	1.3			1.7		
NS100N/H	1P/1D	0.5					
	2P/2D	1.45					
NS100N	3P/2D	1.79	0.8	2.2	0.87	2	1.2
NS100N/H/L	3P/3D	2.05	0.8	2.2	0.87	2	1.2
	4P/4D	2.57	1.05	2.2	1.13	2.2	1.2
NS125E	3P/3D	1.8	0.8		0.9		
	4P/4D	2.3	1.1		1.2		
NS160N/H	1P/1D	0.5					
	2P/2D	1.45					
NS160N	3P/2D	1.85	0.8	2.2	0.87	2	1.2
NS160N/H/L	3P/3D	2.10	0.8	2.2	0.87	2	1.2
	4P/4D	2.58	1.05	2.2	1.13	2.2	1.2
NS250N	3P/2D	1.94	0.8	2.2	0.87	2	1.2
NS250N/H/L	3P/3D	2.2	0.8	2.2	0.87	2	1.2
	4P/4D	2.78	1.05	2.2	1.13	2.2	1.2
NS400/630N/H/L	3P/3D	6.19	2.4	2.2	2.8	4.6	2.8
	4P/4D	8.13	2.8	2.2	3	4.9	2.8
NS630b to 1600 manual control	3P	14		14			
	4P	18		18			
$\begin{aligned} & \text { NS630b to } 1600 \\ & \text { electrical control } \end{aligned}$	3P	14		16			
	4P	18		21			
NS1600b to 3200	3P	24					
	4P	36					
NSA	3P/3D	1.1			1.5		
	4P/4D	1.4			1.7		
NB50N	3P/3D	0.7					
NB100F/N	3P/3D	1.2					
NB250N	3P/3D	1.94					
NB400/600N	3P/3D	6.19					

The table above presents the weights (in kg) of the circuit breakers and the main accessories, which must be summed to obtain the total weight of complete configurations.

Compact NS80 to 630

When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection devices installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.
If installation conformity is not checked by type tests, it is also necessary to:

- use insulated bars for circuit-breaker connections
$■$ block off the busbars using insulating screens.
For Compact NS80 to 630 devices, terminal shields, phase barriers and the insulation kit are recommended and may be mandatory depending on the utilisation voltage and the type of installation (fixed, withdrawable). (See page 147.)
Minimal distance between two adjacent circuit breakers

Minimal distance between the circuit breaker and top, bottom or side panels
 insulation or insulated bars

Minimal distance between the circuit breaker and front or rear panels

Dimensions (mm)		Insulation, insulated bars or painted sheetmetal			Bare sheetmetal					
Compact circuit breaker		C1	D1	D2	C2	D1	D2	A1 (2)	A2 (3)	B
NS80H-MA	$\mathrm{U} \leqslant 440 \mathrm{~V}$	0	30	30	5	35	35	0	10	0
NSC100N	$\mathrm{U}<600 \mathrm{~V}$	0	30	30	10 (1)	35	35	0	20	0
	$\mathrm{U} \geqslant 600 \mathrm{~V}$	0	30	30	20 (1)	35	35	0	40	0
NS100-250	$\mathrm{U} \leqslant 440 \mathrm{~V}$	0	30	30	5	35	35	0	10	0
	U<600 V	0	30	30	10 (1)	35	35	0	20	0
	$\mathrm{U} \geqslant 600 \mathrm{~V}$	0	30	30	20 (1)	35	35	0	40	0
NS400-630	$\mathrm{U} \leqslant 440 \mathrm{~V}$	0	30	30	5	60	60	0	10	0
	U<600 V	0	30	30	10 (1)	60	60	0	20	0
	U $\geqslant 600 \mathrm{~V}$	0	30	30	20 (1)	100	100	0	40	0

(1) Distance must be doubled with phase barriers.
(2) For Compact NS with long or short terminal shields.
(3) For Compact NS without terminal shields.

The mandatory distances when installing Compact NS circuit breakers are calculated from the device case, not taking into account the terminal shields or the phase barriers.

Fixed Compact NS400 1000 V AC, front connection
Power supply from the top or bottom. Connection of cables or busbars.

Insulating kit is standard.

Connection using cables with lugs or busbars, $F=100$. Connection using bare cables, $F=150$.

Compact NS630b to 3200 (fixed devices)

Insulated parts		Metal parts
NS630b to $\mathbf{1 6 0 0}$		

Compact NS630b to 1600 (withdrawable devices)

	Insulated parts	Metal parts	Live parts
\mathbf{A}	0	0	30
\mathbf{B}	10	10	60
\mathbf{C}	0	0	90

F Datum

Direct connection of bare cables, devices with terminal shields.

Connection of cables with lugs, devices with terminal shields.

Connection of insulated bars, devices with terminal shields.

Rear connection or plug-in base, devices with terminal shields.

Minimum dimensions (mm) Compact circuit breaker	A
NS80H-MA/NSC100N	0
NS100-630	0
NS630b-1600	250
NS1600b-3200	300

Door interlock for Compact NS630b to 1600

Mounted on the left or right-hand side of the chassis, this locking device prevents opening of the door if the circuit breaker is in the connected or test positions. If the circuit breaker was connected with the door open the door may be closed without having to disconnect the circuit breaker.

Device in the connected or test positions
Door locked

Device in the disconnected position
Door not locked

Connection of MN and MX
 voltage releases for Compact NS630b to 3200

Release wiring

During pick-up, the power drawn is approximately 150 to 200 VA. For low supply voltages (12, 24, 48 V), the maximum cable length therefore depends on the supply voltage and the size of the cables.
Indicative values for maximum wire lengths (in metres)

		12 V		24 V		48 V	
		2.5 mm ${ }^{2}$	1.5 mm ${ }^{2}$	2.5 mm ${ }^{2}$	$1.5 \mathrm{~mm}^{2}$	2.5 mm²	1.5 mm ${ }^{2}$
MN	100 \% U source	-	-	58	35	280	165
	85 \% U source	-	-	16	10	75	45
MX	100 \% U source	21	12	115	70	550	330
	85 \% U source	10	6	75	44	350	210

Note. The lengths mentioned are for each of the two supply wires.

Power connections for Compact NS80H-MA, NSC100N, NSA160

		Standard device	With distribution connector
	L (mm)	18	$\leqslant 10$
	$\mathrm{S}\left(\mathrm{mm}^{2}\right) \mathrm{Cu} / \mathrm{Al}$	1.5 to 70 rigid	1.5 to 16 rigid (1)
		1.5 to 50 flexible	1.5 to 10 flexible (1)
	Tightening torque (Nm)	5	2
OS			

(1) For flexible cables from 1.5 to $4 \mathrm{~mm}^{2}$, connection with crimped or self-crimping ferrule.

Power connections for Compact NS100 to 630 Connection of insulated bars or cables with lugs

NS100 to 250
Spreader

Where $\mathrm{U}>600 \mathrm{~V}$, the mandatory insulation kit means separate spreaders cannot be used. The one-piece spreader must be used.

Straight terminal extensions Tinned copper.

Right-angle terminal extensions
Tinned copper. Upstream side.

NS400 and 600
Separate spreaders with 52.5 and 70 mm pole pitches

Tinned copper

Edgewise terminal extension
Tinned copper

Where $\mathrm{U}>600 \mathrm{~V}$, use of the 52.5 mm spreaders requires a specific insulation kit. The 70 mm spreaders may not be used.
Right-angle terminal extensions
Tinned copper Upstream side

Close-up view of two cables with lugs.

(1) Tightening torque for lugs or bars on the circuit breaker
(2) Tightening torque for rear connections or terminal extensions on plug-in base

Connections with accessories

NS100 to 250

(1) Tightening torque for spreaders or terminal extensions on the circuit breaker
(2) Tightening torque for spreaders or terminal extensions on plug-in base

Spreaders, straight and right-angle terminal extensions are supplied with flexible phase barriers.

NS400 and 630

Pole pitch

| Without spreaders | 45 mm | | |
| :--- | :--- | :--- | :--- | :--- |
| | $52,5 \mathrm{ou} 70 \mathrm{~mm}$ | | |

[^8](2) Tightening torque for spreaders or terminal extensions on plug-in base

Spreaders, straight and right-angle terminal extensions are supplied with flexible phase barriers.

Connection of bare cables

NS100 to 250

Distribution connector

Polybloc distribution block

	1-cable connector	Steel $\leqslant 160 A$	Aluminium$\leqslant 250 A$		
	$\mathrm{L}(\mathrm{mm})$	20	20		
	S (mm ${ }^{2} \mathrm{Cu} / \mathrm{Al}$	1.5 to $95^{(1)}$	10... 16	25... 35	50... 185
	Tightening torque (Nm)	1215	20	26	
	L (mm)	15 or 30			
	S (mm ${ }^{2} \mathrm{Cu} / \mathrm{Al}$	1.5 to $6^{(1)} 8$ to 35			
	Tightening torque (Nm)	46			
	Polybloc distribution block (6 or 9 cables)				
	L (mm)	12			
	S (mm ${ }^{2} \mathrm{Cu} / \mathrm{Al}$	1.5 to 10			

(1) For flexible cables from 1.5 to 4 mm 2 , connection with crimped or self-crimping ferrule.

NS400 and 630

1-cable connector

2-cable connector

1-cable connector 1 cable	2-cable connector 2 cables
20	30 or 60
35 to 300	2×85 to 2×240
rigid $/$ flexible	rigid / flexible
31	31

Fixed Compact NS, front connections			
	NS100/250N/H/L	NS400/630N/H	NS400/630L
$\mathrm{U}<500 \mathrm{~V}$	Phase barriers or long terminal shields recommended. Insulated bars are mandatory.		Phase barriers or long terminal shields recommended. Insulated bars are mandatory.
$500 \mathrm{~V} \leqslant \mathrm{U} \leqslant 600 \mathrm{~V}$	Phase barriers or long terminal shields are mandatory.	Phase barriers or long terminal shields are mandatory.	Phase barriers or long terminal shields are mandatory.
U > 600 V	Insulation kit (1). Insulated bars are mandatory.	Insulation kit (1). Insulated bars are mandatory.	Insulation kit (1). Insulated bars are mandatory.

The insulation kit is not compatible with:

- separate spreaders for Compact NS100 to 250. The one-piece spreader must be used - separate spreaders (70 mm) for Compact NS400 and 630. For the 52.5 mm spreaders, there is a specific insulation kit.

Fixed Compact NS, rear connections

	NS100/250N/H/L	NS400/630N/H	NS400/630L
All voltage levels	Short terminal shields recommended.	Short terminal shields recommended.	Short terminal shields recommended.

Withdrawable Compact NS, front and rear connections

	NS100/250N/H/L	NS400/630N/H	NS400/630L
All voltage levels	Short terminal shields are mandatory. Insulated bars	Short terminal shields	Short terminal shields
are mandatory.	are mandatory.		
arsulated bars	Insulated bars		
are mandatory	are mandatory.		
		for U $\geqslant 500 \mathrm{~V}$.	

Use of an insulating screen (supplied with the plug-in base) is mandatory:

- between the backplate and the plug-in base, for front connection
- between the panel and the plug-in base, for rear connection through the backplate with connectors.

Power connections for Compact NS630b to 3200

Conductor materials and electrodynamic stresses

Compact circuit breakers can be connected indifferently with bare-copper, tinnedcopper and tinned-aluminium conductors (flexible or rigid bars, cables. In the event of a short-circuit, thermal and electrodynamic stresses will be exerted on the conductors. They must therefore be correctly sized and maintained in place using supports.
Electrical connection points on all types of devices (switch-disconnectors, contactors, circuit breakers, etc.) should not be used for mechanical support.

Ties for flexible bars and cables

The table below indicates the maximum distance between ties depending on the prospective short-circuit current.
The maximum distance between ties attached to the switchboard frame is 400 mm .

Type of tie	"Panduit" ties Width: 4.5 mm Maximum load: $\mathbf{2 2} \mathbf{~ k g}$ Colour: white			"Sarel" ties Width: 9 mm Maximum load: 90 kg Colour: black				
Maximum distance between ties (mm)	200	100	50	350	200	100	70	50 (double ties)
Short-circuit current (kA rms)	10	15	20	20	27	35	45	100

Note. For cables $\geqslant 50 \mathrm{~mm}^{2}$, use 9 mm -wide ties.

Connection of bars

Bars must be adjusted to ensure correct positioning on the terminals before bolting (B) Bars must rest on a support firmly attached to the switchboard frame, such that the circuit-breaker terminals do not bear any weight (C).

Efforts électrodynamiques

The first spacer between bars must be positioned within a maximum distance (see table below) of the connection point to the circuit breaker. This distance is calculated to resist the electrodynamic stresses exerted between the bars of each phase during a short-circuit.
Maximum distance A between the circuit-breaker connection and the first spacer between bars, depending on the short-circuit current

Isc (kA)	30	50	65	80	100	150
Distance (mm)	350	300	250	150	150	150

1 terminal screws, factory tightened to 13 Nm 2 circuit-breaker terminal
3 bars
4 bolt
5 washer
6 nut

Connections

The quality of bar connections depends, among other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
The correct tightening torques for the connection of bars to the circuit-breaker terminals are indicated in the table below.
The values below are for copper bars and steel nuts and bolts (class 8.8).
The same values apply to AGS-T52 quality aluminium bars
(French standard NFA 02-104 and American National Standard H-35-1).
Examples of bar connections

Bar drilling

Examples

Insulation distance

Dimensions (mm)

Utilisation voltage	X minimum
$U i \leqslant 600 \mathrm{~V}$	8 mm
$U i \leqslant 1000 \mathrm{~V}$	14 mm

Bar bending

Bars must be bent taking into account the XXX indicated in the table below. A tighter bend may cause cracks.

Dimensions (mm)

e	XXX r Minimum	Recommended
5	5	7.5
10	15	18 to 20

Sizing of bars

The following tables are based on the following assumptions:

- maximum permissible temperature of bars is $100^{\circ} \mathrm{C}$
- ambient temperature inside the switchboard near the device and its connections is Ti (IEC 60947-2)
\square busbars made of copper and not painted.
Note.
The values presented in the tables are the result of trials and theoretical calculations on the basis of the assumptions mentioned above.
These tables are intended as an aid in designing connections, however, the actual values must be confirmed by tests on the installation.

Front or horizontal rear connections

Compact	Maximum service current	$\mathrm{T}_{\mathrm{i}}: 40^{\circ} \mathrm{C}$ Number of bars 5 mm thick	10 mm thick	$\mathrm{T}_{\mathrm{i}}: 50^{\circ} \mathrm{C}$ Number of bars 5 mm thick	10 mm thick	$\mathrm{T}_{\mathrm{i}}: 6{ }^{\circ} \mathrm{C}$ Number of bars 5 mm thick	10 mm thick
NS630b	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	1b. 30×10	$2 \mathrm{~b} .30 \times 5$	1b. 30×10
NS630b	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	1b. 40×10	$2 \mathrm{~b} .40 \times 5$	1b. 40×10
NS800	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	1b. 63×10
NS1000	1000	$3 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NS1250	1250	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
		$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$			
NS1600 / 1600b	1400	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NS1600 / 1600b	1600	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$3 \mathrm{~b} .50 \times 10$
NS2000	1800	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$
NS2000	2000	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	3b. 100×5	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .63 \times 10$
NS2500	2200	3b. 100×5	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .100 \times 10$
NS2500	2500	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$
NS3200	2800	4b. 100×5	$3 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$
NS3200	3000	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$4 \mathrm{~b} .80 \times 10$
NS3200	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$

Power connections for Compact NS630b to 3200 Sizing of bars

Vertical rear connections

Compact	Maximum service current	$\mathrm{T}_{\mathrm{i}}: 40^{\circ} \mathrm{C}$ Number of bars 5 mm thick	10 mm thick	$\mathrm{T}_{\mathrm{i}}: 50^{\circ} \mathrm{C}$ Number of bars 5 mm thick	10 mm thick	$\mathrm{T}_{\mathrm{i}}: 60^{\circ} \mathrm{C}$ Number of bars 5 mm thick	10 mm thick
NS630b	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NS630b	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NS800	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$
NS1000	1000	$2 \mathrm{~b} .50 \times 5$	1b. 50×10	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .63 \times 5$	1b. 63×10
NS1250	1250	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$
NS1600	1400	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$
NS1600	1600	$2 \mathrm{~b} .80 \times 5$	1b. 80×10	$2 \mathrm{~b} .80 \times 5$	1b. 80×10	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$

Power connections for Compact NS630b to 1600 Recommended drilling dimensions

Rear connection Rear connection with spreaders

Middle left or middle right spreader for 4P

Middle spreader for 3P

 for 4P

Left or right spreader for 3P

Vertical rear connection

Front connection
Front connection with vertical-connection adapter

Top terminal
Bottom terminal

Installation
recommendations

Power connections for Compact NS1600b to 3200 Recommended drilling dimensions

Front connection (NS1600b to 2500)

(13)

Front connection with vertical-connection adapter (NS1600b to 2500)

Front connection (NS3200)

Temperature derating
 Compact NS devices equipped
 with thermal-magnetic trip units

The values opposite are not modified for fixed circuit breakers equipped with one of the following modules:

- Vigi module
- ammeter module
- insulation-monitoring module

■ current-transformer module.
They also apply to plug-in / withdrawable circuit breakers equipped with one of the following modules:

- ammeter module
- current-transformer module.

However, for plug-in / withdrawable circuit breakers equipped with a Vigi module or an insulation-
monitoring module, the coefficients in the table below must be applied

Trip unit	Coefficient
TM16 to TM125	1
TM160 to TM250	0.9

When the ambient temperature is greater than $40^{\circ} \mathrm{C}$, overload-protection characteristics are slightly modified.
To determine tripping times using time/current curves, use Ir values corresponding to the thermal setting on the device, multiplied by the coefficients in the tables below.

Single-pole and two-pole Compact NS

Rating (A)	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{4 5}{ }^{\circ} \mathbf{C}$	$\mathbf{5 0}{ }^{\circ} \mathbf{C}$	$\mathbf{5 5}{ }^{\circ} \mathbf{C}$	$\mathbf{6 0}{ }^{\circ} \mathbf{C}$	$\mathbf{6 5}{ }^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$
$\mathbf{1 6}$	16	15.6	15.2	14.8	14.5	14	13.8
$\mathbf{2 5}$	25	24.5	24	23.5	23	22	21
$\mathbf{4 0}$	40	39	38	37	36	35	34
$\mathbf{6 3}$	63	61.5	60	58	57	55	54
$\mathbf{8 0}$	80	78	76	74	72	70	68
$\mathbf{1 0 0}$	100	97.5	95	92.5	90	87.5	85
$\mathbf{1 2 5}$	125	122	119	116	113	109	106
$\mathbf{1 6 0}$	160	156	152	147.2	144	140	136
$\mathbf{2 0 0}$	200	195	190	185	180	175	170
$\mathbf{2 5 0}$	250	244	238	231	225	219	213

Compact NS100 to $\mathbf{2 5 0}$ equipped with TM-D and TM-G trip units

Rating (A)	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{4 5}{ }^{\circ} \mathbf{C}$	$\mathbf{5 0}^{\circ} \mathbf{C}$	$\mathbf{5 5}{ }^{\circ} \mathbf{C}$	$\mathbf{6 0}{ }^{\circ} \mathbf{C}$	$\mathbf{6 5}{ }^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$
$\mathbf{1 6}$	16	15.6	15.2	14.8	14.5	14	13.8
$\mathbf{2 5}$	25	24.5	24	23.5	23	22	21
$\mathbf{3 2}$	32	31.3	30.5	30	29.5	29	28.5
$\mathbf{4 0}$	40	39	38	37	36	35	34
$\mathbf{5 0}$	50	49	48	47	46	45	44
$\mathbf{6 3}$	63	61.5	60	58	57	55	54
$\mathbf{8 0}$	80	78	76	74	72	70	68
$\mathbf{1 0 0}$	100	97.5	95	92.5	90	87.5	85
$\mathbf{1 2 5}$	125	122	119	116	113	109	106
$\mathbf{1 6 0}$	160	156	152	147.2	144	140	136
$\mathbf{2 0 0}$	200	195	190	185	180	175	170
$\mathbf{2 5 0}$	250	244	238	231	225	219	213

Compact NSA160

Rating (A)	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{4 5}{ }^{\circ} \mathbf{C}$	$\mathbf{5 0}^{\circ} \mathbf{C}$	$\mathbf{5 5}{ }^{\circ} \mathbf{C}$	$\mathbf{6 0}{ }^{\circ} \mathbf{C}$	$\mathbf{6 5}{ }^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$
$\mathbf{1 6}$	16	15.6	15.2	14.8	14.5	14	13.8
$\mathbf{2 5}$	25	24.5	24	23.5	23	22	21
$\mathbf{3 2}$	32	31.3	30.5	30	29.5	29	28.5
$\mathbf{4 0}$	40	39	38	37	36	35	34
$\mathbf{5 0}$	50	49	48	47	46	45	44
$\mathbf{6 3}$	63	61.5	60	58	57	55	54
$\mathbf{8 0}$	80	78	76	74	72	70	68
$\mathbf{1 0 0}$	100	97.5	95	92.5	90	87.5	85
$\mathbf{1 2 5}$	125	122	119	116	113	109	106
$\mathbf{1 6 0}$	160	156	152	147.2	144	140	136

Compact NB50...NB600

NB50 / NB100	$40^{\circ} \mathrm{C}$	$45{ }^{\circ} \mathrm{C}$	$50{ }^{\circ} \mathrm{C}$	$55{ }^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$		
NB50N	1	1	1	1	1		
NB100F/N	1	1	1	1	1		
NB250N							
Rating (A)			$50{ }^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
125			125	122	119	116	113
150			150	146	143	139	135
175			175	171	166	162	158
200			200	195	190	185	180
225			225	220	214	208	203
NB400N							
Rating (A)			$50{ }^{\circ} \mathrm{C}$	$55{ }^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
400			400	390	380	370	360
NB600N							
Rating (A)			$50{ }^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
600			600	585	570	550	535

Temperature derating
Compact NS devices equipped with electronic trip units

The values opposite are not modified for fixed circuit breakers equipped with one of the following modules:

- Vigi module
- ammeter module
- insulation-monitoring module
- current-transformer module.

They also apply to plug-in / withdrawable circuit breakers equipped with one of the following modules:

- ammeter module
- current-transformer module.

However, for plug-in / withdrawable circuit breakers equipped with a Vigi module or an insulation-
monitoring module, the coefficients in the table below must be applied.

Circuit breaker	Trip unit	Coeff.
NS100N/H/L	STR22SE/GE 40 to 100	1
NS160N/H/L	STR22SE/GE 40 to 160	1
NS250N/H/L	STR22SE/GE 100 and 160	1
NS250N/H/L	STR22SE/GE 250	0.86

The values opposite are not modified for fixed or plug-in / withdrawable circuit breakers equipped with one of the following modules:

- ammeter module
- current-transformer module.

However, for fixed or plug-in / withdrawable circuit breakers equipped with a Vigi module or an insulationmonitoring module, the coefficients in the table below must be applied.

Circuit breaker	Trip unit	Coeff.
NS400N/H/L	STR23SE and 53UE STR23SV and 53SV	0.97
NS630N/H/L	STR23SE and 53UE STR23SV and 53SV	0.9

Note. To provide the Visu function, Compact NS circuit breakers, with or without a Vigi module, are combined with INV switch-disconnectors. Tripping values for the selected combination are indicated in the Interpact catalogue.

Electronic trip units are not affected by variations in temperature. However, the maximum permissible current in the circuit breaker still depends on the ambient temperature.

Compact NS100...NS250

The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

NS100N/H/L	$40^{\circ} \mathrm{C}$	$45{ }^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
In: 40 to 160 A	no derating						
Ir max	1	1	1	1	1	1	1
NS250N/H/L	$40^{\circ} \mathrm{C}$	$45{ }^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
In: 100 to 160A	no derating						
Ir max	1	1	1	1	1	1	1
In: 250A	250	250	250	237.5	237.5	225	225
Ir max	1	1	1	0.95	0.95	0.90	0.90

Compact NS400 and NS630

The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

NS400N/H/L		$40{ }^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
Fixed	In: 400A	400	400	400	390	380	370	360
	Io/lr max	1/1	1/1	1/1	1/0.98	1/0.95	1/0.93	1/0.9
Plug-in / withdrawable	In: 400	400	390	380	370	360	350	340
	Io/Ir max	1/1	1/0.98	1/0.95	1/0.93	1/0.9	1/0.88	1/0.85
NS630N/H/L		$40{ }^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55{ }^{\circ} \mathrm{C}$	$60{ }^{\circ} \mathrm{C}$	$65{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
Fixed	In: 630A	630	615	600	585	570	550	535
	Io/Ir max	1/1	1/0.8	1/0.95	1/0.93	1/0.9	1/0.88	1/0.85
Plug-in / withdrawable	In: 570A	570	550	535	520	505	490	475
	Io/lr max	1/0.9	1/0.88	1/0.85	1/0.83	1/0.8	0.8/0.98	0.8/0.95

Compact NS630b to NS1600 (2)

The table below indicates the maximum rated-current value for each type of connection, depending on the ambient temperature.
For mixed connections, use the same derating values as for horizontal connections.
For ambient temperatures higher than $60^{\circ} \mathrm{C}$, please consult us.

Version Connection temp. $\mathrm{Ti}^{(1)}$	Fixed device									
	Front or horizontal rear					Vertical rear				
	40	45	50	55	60	40	45	50	55	60
NS630b N/H/L	630	630	630	630	630	630	630	630	630	630
NS800 N/H/L	800	800	800	800	800	800	800	800	800	800
NS1000 N/H/L	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
NS1250 N/H	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
NS1600 N/H	1600	1600	1600	1600	1550	1600	1600	1600	1600	1600
Version	Withdrawable device Front or horizontal rear									
Connection						Vertical rear				
temp. Ti ${ }^{(1)}$		45	50	55	60	40	45	50	55	60
NS630b N/H/L	630	630	630	630	630	630	630	630	630	630
NS800 N/H/L	800	800	800	800	800	800	800	800	800	800
NS1000 N/H/L	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
NS1250 N/H	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
NS1600 N/H	1600	1600	1520	1480	1430	1600	1600	1600	1560	1510

Compact NS1600b à 3200

Version Connection temp. $\mathrm{Ti}^{(1)}$	Fixed device									
	Front (horizontal)					Front (vertical)				
	40	45	50	55	60	40	45	50	55	60
NS1600b N/H	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
NS2000 N/H	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
NS2500 N/H	2500	2500	2500	2500	2500	2500	2500	2500	2350	2110
NS3200 N/H	3200	3200	3200	3200	3200	3200	3200	3200	3000	2700

(1) Ti is the temperature inside the switchboard, near the circuit breaker and its connections (IEC 60947-2).
(2) For device installed horizontally, use the temperature deratings indicated for front or horizontal rear connection.

Power dissipation / Resistance Compact NS devices equipped with thermal-magnetic trip units

Power dissipated per pole (P/pole) in Watts (W). Resistance per pole (R/pole) in milliohms ($\mathrm{m} \Omega$). Total power dissipation is the value measured at In, $50 / 60 \mathrm{~Hz}$, for a three-pole or four-pole circuit breaker (values above power $\mathrm{P}=3 \mathrm{RI}^{2}$).

Compact NSC100N

		Fixed device		Additional modules	
3/4 poles	Rat. (A)	R/pole	P/pole	Vigi ($\mathrm{N}, \mathrm{L} 3$)	Vigi (L1, L2)
NSC100N	16	15	4	0.06	0.06
	20	11.2	4.5	0.1	0.1
	25	8	5	0.16	0.16
	32	5.4	5.5	0.26	0.26
	40	3.7	6	0.4	0.4
	50	2.8	7	0.63	0.63
	63	2	8	1	1
	70	2	10	1.3	1.3
	80	1.4	9	1.6	1.6
	100	1	10	2.5	2.5
NSC100NA	100	0.6	6	2.5	2.5

Compact NS100 to $\mathbf{2 5 0}$ equipped with TM-D and TM-G trip units

3/4 poles	Rat. (A)	Fixed device		Additional modules				
		R/pole	P/pole	Vigi (N, L3)	Vigi (L1, L2)	Withdrawable	Ammeter module	Transfo. module
NS100N/H/L	16	11.42	2.92	0	0	0	0	0
	25	6.42	4.01	0	0	0.1	0	0
	40	3.42	5.47	0.10	0.05	0.2	0.1	0.1
	63	2.17	8.61	0.3	0.15	0.4	0.1	0.1
	80	1.37	8.77	0.4	0.2	0.6	0.1	0.1
	100	0.88	8.8	0.7	0.35	1	0.2	0.2
NS160N/H/L	80	1.26	8.06	0.4	0.2	0.6	0.1	0.1
	100	0.77	7.7	0.7	0.35	1	0.2	0.2
	125	0.69	10.78	1.1	0.55	1.6	0.3	0.3
	160	0.55	13.95	1.8	0.9	2.6	0.5	0.5
NS250N/H/L	125	0.61	9.45	1.1	0.55	1.6	0.3	0.3
	160	0.46	11.78	1.8	0.9	2.6	0.5	0.5
	200	0.39	15.4	2.8	1.4	4	0.8	0.8
	250	0.3	18.75	4.4	2.2	6.3	1.3	1.3

Compact NS80 and NS100 to 630 equipped with MA trip units

		Fixed device		Additional modules				
3 poles	Rat. (A)	R/pole	P/pole	Vigi (N, L3)	Vigi (L1, L2)	Withdrawable		Transfo. module
NS80H	1.5	93.3	0.21					
	2.5	89.6	0.56					
	6.3	75.6	3					
	12.5	12.8	2					
	25	2.24	1.4					
	50	1.04	2.6					
	80	0.94	6.02					
NS100N/H/L	2.5	148.42	0.93	0	0	0	0	0
	6.3	99.02	3.93	0	0	0	0	0
	12.5	4.05	0.63	0	0	0	0	0
	25	1.66	1.04	0	0	0.1	0	0
	50	0.67	1.66	0.2	0.1	0.3	0.1	0.1
	100	0.52	5.2	0.7	0.35	1	0.2	0.2
NS160N/H/L	150	0.38	8.55	1.35	0.68	2.6	0.45	0.45
NS250N/H/L	220	0.3	14.52	2.9	1.45	4.89	0.97	0.97
NS400H/L	320	0.12	12.29	3.2	1.6	6.14	1.54	1.54
NS630H/L	500	0.1	25	13.99	7	15	3.75	3.75

Single-pole and two-pole Compact NS100 to 160

	Fixed device		
$\mathbf{1 / 2}$ poles	Rat. (A)	R/pole	P/pole
NS100N/H	16	11.3	2.89
	20	6.3	2.52
	30	2.9	2.61
	40	2.9	4.64
	50	1.4	3.5
	63	1.4	5.56
	80	1.25	8
	100	0.76	7.6
NS160N/H	125	0.63	9.84
	160	0.48	12.29

Installation
recommendations

Power dissipation / Resistance Compact NS devices equipped with electronic trip units

Power dissipated per pole (P/pole) in Watts (W) Resistance per pole ($\mathrm{R} /$ pole) in milliohms ($\mathrm{m} \Omega$) (measured cold). Total power dissipation is the value measured at In, $50 / 60 \mathrm{~Hz}$, for a three-pole or fourpole circuit breaker (values above power $\mathrm{P}=3 \mathrm{R}^{2}$).

Compact NS100 to NS630

3/4 poles	Rat. (A)	Fixed device		Additional modules			Ammeter Transfo.	
		R/pole	P/pole	Vigi	Vigi	With-		
				(N, L3)	(L1, L2)	drawable	module	module
NS100N/H/L	40	0.84	1.34	0.1	0.05	0.2	0.1	0.1
	100	0.468	4.68	0.7	0.35	1	0.2	0.2
NS160N/H/L	40	0.73	1.17	0.4	0.2	0.6	0.1	0.1
	100	0.36	3.58	0.7	0.35	1	0.2	0.2
	160	0.36	9.16	1.8	0.9	2.6	0.5	0.5
NS250N/H/L	100	0.27	2.73	1.1	0.55	1.6	0.2	0.2
	250	0.28	17.56	4.4	2.2	6.3	1.3	1.3
NS400N/H/L	400	0.12	19.2	3.2	1.6	9.6	2.4	2.4
NS630N/H/L	630 (1)	0.1	39.69	6.5	3.25	19.49	5.95	5.95

(1) The dissipation values for the Vigi modules and withdrawable circuit breakers are given for 570 A

Compact NSA160

3/4 poles	Rat. (A)	Fixed device		Additional modules	
		R/pole	P/pole	Vigi	Vigi
				(N, L3)	(L1, L2)
NSA160	16	15	4	0.06	0.06
	25	8	5	0.16	0.16
	32	5.4	5.5	0.26	0.26
	40	3.7	6	0.4	0.4
	50	2.8	7	0.63	0.63
	63	2	8	1	1
	80	1.4	9	1.6	1.6
	100	1	10	2.5	2.5
	125	0.8	12.5	3.9	3.9
	160	0.6	15.4	6.4	6.4
NSA125NA	125	0.7	11		
NSA160NA	160	0.6	15.4		

Compact NS630b to 1600

Version	Fixed device Dissipated power	Input/output resistance
NS630b N/H/L	$30 / 45$	$0.026 / 0.039$
NS800 N/H/L	$45 / 60$	$0.026 / 0.039$
NS1000 N/H/L	$65 / 100$	$0.026 / 0.039$
NS1250 N/H	130	0.026
NS1600 N/H	220	0.026
Version		
	Withdrawable device Dissipated power	
NS630 N/H/L	$55 / 115$	Input/output resistance
NS800 N/H/L	$90 / 120$	0.05
NS1000 N/H/L	$150 / 230$	0.05
NS1250 N/H	250	0.05
NS1600 N/H	460	0.036

Compact NS1600b à 3200

Version	Fixed device	
	Dissipated power	Input/output resistance
NS1600b N/H	250	0.019
NS2000 N/H	250	0.013
NS2500 N/H	300	0.008
NS3200 N/H	420	0.008

Presentation 1
Functions and characteristics 11
Installation recommendations 133
Compact NB 156
Compact NS80H-MA 158
Compact NSC100 160
Compact NSA160 161
Compact NS100 to 630 (fixed version) 162
Vigicompact NS100 to 630 (fixed version) 164
Compact NS100 to 630 166
(plug-in and withdrawable versions)
Vigicompact NS100 to 630 168
(plug-in and withdrawable versions) Compact NS100 to 250 170
(single-pole and two-pole versions)
Visu function for Compact NS100 to 630 172
(combination with Interpact INV)
Motor-mechanism module for Compact NS100 to 630 174
Rotary handle for Compact NS100 to 630 176
Indication and measurement modules 178
for Compact NS100 to 630
Front accessories for Compact NS100 to 630 180
Compact NS630b to 1600 (fixed version) 182
Dimensions 182
Mountings 183
Front-panel cutouts 184
Rotary handle 185
Compact NS630b to 1600 (withdrawable version) 186
Dimensions, mounting and cutouts 186
Rotary handle 187
Compact NS1600b to 3200 (fixed version) 188
Dimensions 188
Compact NS630b to 3200 190
External modules 190
Connection 195
Electrical diagrams 211
Complementary technical information 241

Compact NB50N and 100F/N dimensions

Compact NB50N and 100F/N mounting

Door cutout

Cutout (A)
(B, C)

Dimensions (mm)

Type	C	C1	G	G1	H	H1	H2	H3	H4	H5	K	K1	L	L1	P1	P2	P3	P4	P5	R	R1	R2	R3	ØT	U (e)
NB50N	27	54	55.5	111	65	130	??	??	??	??	12.5	25	37.5	75	68	72	90	70	74	12.5	25	30.5	61	6	$\leqslant 32$
NB100F/N	27	54	66	132	77.5	155	??	??	??	??	15	30	45	90	68	72	90	70	74	12.5	25	43.5	87	6	$\leqslant 32$

(a) short terminal shields
(b) long terminal shields (available for spreaders on NB400
to 600 , pitch $52.5: L 1=157.5 \mathrm{~mm}$).
(c) phase barriers.

Door cutout

Cutout (A)

(B, C)

With toggle cover

Dimensions (mm)

Type	C	C1	C2	C3	C4	C5	C6	C7	G	G1	H	H1	H2	H3	H4	H5
NB250N	29	76	54	108	43	104	34	86	62.5	125	80.5	161	94	188	160.5	321
NB400/600N	41.5	116	92.5	184	56.5	146	46.5	126	100	200	127.5	255	142.5	285	240	480
Type	P1	P2	P3	P4	P5	R	R1	R2	R3	R4	R5	R6	R7	$\boldsymbol{\text { ®T }}$	U (e)	
NB250N	81	86	111	83	88	14.5	29	54	108	29	58	43	86	6	$\leqslant 32$	
NB400/600N	95.5	110	168	117	112	31.5	63	71.5	143	46.5	93	63	126	6	$\leqslant 32$	

(a) long terminal shields

Front-panel cutouts

Cutout A

Cutout C

Extended rotary handle

Front-panel cutout

CCM direct rotary handle
Front-panel cutout

Note.
Door cutout dimensions are given for a device position in the enclosure where $\Delta \geqslant 100+(h \times 5)$ with respect to the door hinge.

Extended rotary handle

Compact NSA160

Dimensions

Compact NSA160

4 poles

Vigicompact NSA160

3 poles

4 poles

Extended rotary handle

Note.
Centre line X indicates the centre of the mounting rail.

On rails

2 poles or 3 poles

On DIN rail with adaptation plate

Front-panel cutouts

Fixed or plug-in circuit breaker

Cutout A

Cutout B

Cutout C

With escutcheon

With toggle cover

Dimensions (mm)

Type	C	C1	C2	C3	C6	C7	C20	C21	G	G1	G4
NS100/160/250N/H/L	29	76	54	108	43	104	34	86	62.5	125	70
NS400/630N/H/L	41.5	116	92.5	184	56.5	146	46.5	126	100	200	113.5
Type	G5	G47	G48	G49	G50	G51	H	H1	H2	H3	H4
NS100/160/250N/H/L	140	95	75	13.5	23	17.5	80.5	161	94	188	160.5
NS400/630N/H/L	227						127.5	255	142.5	285	240
Type	H5	H6	H7	K	K1	K2	L	L1	L2	P1	P2
NS100/160/250N/H/L	321	178.5	357	17.5	35	70	52.5	105	140	81	86
NS400/630N/H/L	480	237	474	22.5	45	90	70	140	185	95.5	110
Type	P4	P5	P6	R	R1	R2	R4	R5	R6	R7	R12
NS100/160/250N/H/L	111(1)	83	88	14.5	29	54	108	143	29	58	43
NS400/630N/H/L	168	107	112	31.5	63	71.5	143	188	46.5	93	63

(1) : P4 = 126 mm for Compact NS250N/H/L.

Type	R13	ØT	ØT4	$\mathbf{U}^{(\text {e })}$
NS100/160/250N/H/L	86	6	22	≤ 32
NS400/630N/H/L	126	6	32	≤ 32

(e) $U \leq 20 \mathrm{~mm}$ if automatic auxiliary connectors are used (NS100 to 250).

Nota :

IDoor cutout dimensions are given for a device position in the enclosure where $\Delta \geqslant 100+(h \times 5)$ with respect to the door hinge.

(d) for rear connection only. For two-pole circuit breakers, the centre hole is not necessary.

On rails

2 poles or 3 poles

4 poles

Fixed or plug-in circuit breaker

Cutout A

Cutout B

With escutcheons

Dimensions (mm)																		
Type	C	C1	C2	C3	C4	C5	C6	C7	C18	C19	C20	C21	G	G1	G6	G7	G8	G9
NS100/160/250N/H/L	29	76	130	184	86	37	43	104	71	68	34	86	62.5	125	137.5	200	145	215
NS400/630N/H/L	41.5	116	192	276	147.5	37	56.5	146	132	68	46.5	126	100	200	200	300	213.5	327
Type	H8	H9	H10	H11	H12	H13	H14	H15	K	K1	K2	L	L1	L2	P1	P2	P4	P5
NS100/160/250N/H/L	155.5	236	169	263	235.5	396	253.5	432	17.5	35	70	52.5	105	140	81	86	$111{ }^{(1)}$	83
NS400/630N/H/L	227.5	355	242.5	385	340	580	337	574	22.5	45	90	70	140	185	95.5	110	168	107

$\frac{\mathrm{NS} 400 / 630 \mathrm{~N} / \mathrm{H} / \mathrm{L}}{(1) \mathrm{L} 4=126 \mathrm{~mm} \text { for Compact NS250N/H/L. }}$

Type	P6	R	R1	R2	R4	R5	R6	R7	R11	R12	R13	R26	R27	Øт	ØT4	$\mathbf{U}^{(e)}$
NS100/160/250N/H/L	88	14.5	29	54	108	143	29	58	58	43	86	14.5	29	6	22	≤ 32
NS400/630N/H/L	112	31.5	29	71.5	143	188	46.5	93	58	63	126	32	47	6	32	≤ 32

(e) $U \leq 20 \mathrm{~mm}$ if automatic auxiliary connectors are used (NS100 to 250).

Note.

Door cutout dimensions are given for a device position in the enclosure where $\Delta \geqslant 100+(h \times 5)$ with respect to the door hinge.

Dimensions

Plug-in base
2 poles or 3 poles

Chassis

2 poles or 3 poles

4 poles

4 poles

On backplate (plug-in base or chassis)
Front connection (insulating screen is mandatory between the backplate and the base, supplied with the base)

Interior rear connection

2P, 3P

$4 P$

Exterior rear connection

2P, 3P

4P

Front-panel cutouts
Plug-in base
Chassis with protection collar and escutcheons

Dimensions (mm)

Type	C11	C17	G10	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24
NS100/160/250N/H/L	103	42.5	95	190	87	174	77.5	155	66	132	82	164	37.5	75	111	222	190
NS400/630N/H/L	155	56	150	300	137	274	125	250	101	202	126	252	75	150	170.5	341	283.5
Type	G25	G26	G27	H16	H17	H18	H19	K	K1	K2	K5	K6	K7	K11	K12	K13	K20
NS100/160/250N/H/L	380	208	416	102.5	205	103.5	210	17.5	35	70	54.5	109	144	74	148	183	35
NS400/630N/H/L	567	318.5	637	157.5	315	140	280	22.5	45	90	71.5	143	188	91.5	183	228	50
Type	K21	K22	L	L1	L2	L6	L7	L8	L9	L10	P2	P4	P7	P8	P9	P10	P12
NS100/160/250N/H/L	70	105	52.5	105	140	92.5	185	216	220	251	86	111 ${ }^{(1)}$	27	45	75	64	32
NS400/630N/H/L	100	145	70	140	185	110	220	250	265	295	110	168	27	45	100	86	32
Type	P44	R8	R9	$\mathbf{U}^{(2)}$	ØT	ØT5	ØT6										
NS100/160/250N/H/L	123	74	148	≤ 32	6	24	30										
NS400/630N/H/L	147	90	180	≤ 32	6	33	33										

(1) $P 4=126 \mathrm{~mm}$ for Compact NS250N/H/L
(2) $U \leq 20 \mathrm{~mm}$ if automatic auxiliary connectors are used (NS100 to 250).

Chassis
See withdrawable Compact, page XXX.

Front-panel cutouts

Plug-in base

See fixed Compact, page XXX.

Dimensions (mm)

Type	C11	C13	C16	C17	G10	G11	G12	G13	G20	G21	H16
NS100/160/250N/H/L	103	84	55	42.5	95	190	87	174	37.5	75	102.5
NS400/630N/H/L	155	84	116.5	56	150	300	137	274	75	150	157.5
Type	H17	K	K1	K2	K5	K6	K7	K11	K12	K13	K20
NS100/160/250N/H/L	205	17.5	35	70	54.5	109	144	74	148	183	35
NS400/630N/H/L	315	22.5	45	90	71.5	143	188	91.5	183	228	50
Type	K21	K22	L	L1	L2	P4	P7	P8	P9	P44	R8
NS100/160/250N/H/L	70	105	52.5	105	140	111(1)	27	45	75	123	74
NS400/630N/H/L	100	145	70	140	185	168	27	45	100	147	90

(1) P4 = 126 mm for Compact NS250N/H/L.

Type	R9	R33	R34	ØT	U(2)
NS100/160/250N/H/L	148	74	148	6	≤ 32
NS400/630N/H/L	180	91.5	148	6	≤ 32

(2) $U \leq 20 \mathrm{~mm}$ if automatic auxiliary connectors are used (NS100 to 250).

Note.
Door cutout dimensions are given for a device position in the enclosure where $\Delta \geqslant 100+(h \times 5)$ with respect to the door hinge.

Front-panel cutout

With escutcheon

Dimensions (mm)

Type	C	C1	C2	C3	C6	C7	G	G1	G4	G5	H
NS100/160/250	29	76	54	108	43	104	62.5	125	70	140	80.5
Type	H1	H2	H3	H4	H6	H7	K	K1	L3	L4	L5
NS100/160/250	161	94	188	160.5	178.5	357	17.5	35	17.5	70	35
Type	P1	P2	P4	P5	P6	R	R1	R2	R4	R5	R6
NS100/160/250	81	86	111	83	88	14.5	29	19	38	73	29
Type	R7	ØT	ØT4	$\mathbf{U}^{(d)}$							
NS100/160/250	58	6	22	≤ 32							

(d) $U \leq 20 \mathrm{~mm}$ if automatic auxiliary connectors are used

Note.

Door cutout dimensions are given for a device position in the enclosure where $\Delta \geqslant 100+(h \times 5)$ with respect to the door hinge.

Visu function for Compact NS100 to 630 (combination with Interpact INV)

Fixed Compact NS100 to 250 with Visu function Interpact INV100 to 250

Mounting on rails

Front-panel cutout

Mounting on rails

3 poles

4 poles

Front-panel cutout

Front-panel cutouts
With IP 40, IK 07 escutcheons and protection collar for Vigi module

Note.

Door cutout dimensions are given for a device position in the enclosure where $\Delta \geqslant 100+(h \times 5)$ with respect to the door hinge.

Dimensions (mm)												
Type	C11	C13	C16	C17	C22	C23	H2O	H21	H22	H23	L	L1
NS100/160/250N/H/L	103	84	56	42.5	29	76	62.5	97	45.5	73	52.5	105
NS400/630N/H/L	155	84	116.5	56	41.5	126	100	152	83	123	70	140
Type	L2	L11	L12	P32	P33	P45	R8	R9	R14	R15	R33	R34
NS100/160/250N/H/L	140	91	45.5	178	143	145	74	148	48.5	97	74	148
NS400/630N/H/L	185	123	61.5	250	215	217	90	180	64.5	129	91.5	148

direct rotary handle

3 poles

4 poles

(a) without keylock
(b) with Ronis keylock
(c) with Profalux keylock

Front-panel cutouts

Fixed or plug-in circuit breaker

Compact

$\mathrm{zl}^{\mathrm{L}} \mathrm{P} 43 \rightarrow$

Vigicompact

Withdrawable circuit breaker

Compact

An escutcheon is mandatory

Vigicompact

Protection collar for Vigi module is mandatory.
Escutcheons are mandatory for rotary handles and Vigi protection collars.

MCC direct rotary handle

Dimensions (mm)

Type	C4	C5	C11	C13	C16	C17	C22	C23	G36	G37	G38	G39	H9	H10	H2O	H23	H24
NS100/160/250N/H/L	86	37	103	84	55	42,5	29	76	36	72	41	100	60	120	28	73	9
NS400/630N/H/L	147,5	37	155	84	116,5	56	41,5	126	36	72	51	145	83	160	40	123	24,5
Type	H25	H26	K14	K15	L	L1	L2	L7	L8	L11	L12	L13	L14	L15	P34	P35	P36
NS100/160/250N/H/L	37,5	75	50	100	52,5	105	140	69	120	91	9,25	37,5	75	55	121	155	156
NS400/630N/H/L	37,5	75	72,5	145	70	140	185	85	160	123	5	37,5	75	66,5	145	179	180
Type	P37	P38(1)	P40(1)	P42	P43	P44	R1	R8	R9	R14	R15	R26	R33	R34	ØT6	ØT7	
NS100/160/250N/H/L	164	≥ 185	≥ 248	125	89	123	29	74	148	48,5	97	14,5	74	148	4,2	50	
NS400/630N/H/L	188	≥ 209	≥ 272	149	112	147	29	90	180	64,5	129	32	91,5			5	

(1) $\leq 600 \mathrm{~mm}$.

Nota :

Door cutout dimensions are given for a device position in the enclosure where $\Delta \geq 100+(h \times 5)$ with respect to the door hinge.

Dimensions

Circuit breaker with ammeter module

Circuit breaker with current-transformer module

Mounting

On backplate
2 poles or 3 poles

4 poles

(d) for rear connection only. For two-pole circuit breakers, the centre hole is not necessary.

On rails
2 poles or 3 poles

4 poles

Front-panel cutout
Circuit breaker with ammeter module and voltage-presence indicator

Dimensions (mm)

Type	C	C1	C22	C23	C27	C28	C29	C30	G	G1	G6	G7	G8	G9	H8	H9	H10
NS100/160/250N/H/L	28	76	28	76	56.5	124	30	78.5	62.5	125	137.5	200	145	215	155.5	236	169
NS400/630N/H/L	41.5	116	41.5	126	56.5	185.5	30	122	100	200	200	300	213.5	327	227.5	355	242.5
Type	H11	H12	H13	H14	H15	K	K1	K2	P1	P2	P4	P6	P43	P47	P48	R	R1
NS100/160/250N/H/L	263	235.5	396	253.5	432	17.5	35	70	81	86	111(1)	88	89	137	128	14.5	29
NS400/630N/H/L	385	340	580	337	574	22.5	45	90	95.5	110	168	112	112	162	154	31.5	63
Type	R14	R15	R16	R17	Øт	ØT4	$\mathbf{U}_{(2)}$										
NS100/160/250N/H/L	48.5	97	46.5	93	6	22	≤ 32										
NS400/630N/H/L	64.5	129	64.5	93	6	32	≤ 32										

(1) P4 $=126 \mathrm{~mm}$ for Compact NS $250 \mathrm{~N} / \mathrm{H} / \mathrm{L}$
(2) $U \leq 20 \mathrm{~mm}$ if automatic auxiliary connectors are used (NS100 to 250).

Front accessories for Compact NS100 to 630

Protection collar

Toggle protection collar

Vigi-module protection collar

Circuit breaker with toggle or rotary handle

Circuit breaker with motor-mechanism module

Toggle cover

Front-panel escutcheons
For toggle

For Vigi module

Front-panel escutcheons

For protection collar, motor mechanism or rotary handle

For Vigi module with protection collar or measurement module

Dimensions (mm)

Type	A	A1	A2	A3	D	D1	D2	D3	M	M2	M3	M6	M7	M8
NS100/160/250N/H/L	91	69	157	94	35	3.5	6.5	40	73	115	102	114	101	94
NS400/630N/H/L	123	102	189	35	134	3.5	6.5	60	123	155	142	164	151	134

Dimensions, volumes

Compact NS630b to 1600
(fixed version)

Dimensions

Manual control

Front connection

(1) terminal shields are optional

Rear connection

Electrical control

Front and rear connection

F : Datum
Note.
Dimensions for front and rear connection on electrically operated devices are identical to those for manually operated devices.

Front connection

On backplate

Rear connection

On backplate or rails

4P

Note.
Mounting parameters for electrically operated devices are identical to those for manually operated devices.
\boldsymbol{X} and \boldsymbol{Y} are the symmetry planes for a 3-pole device
\boldsymbol{Z} is the back plane of the device.

Dimensions, volumes

Compact NS630b to 1600
(fixed version) (cont.)
Front-panel cutouts

Toggle control

Door cutout
A

C

Door cutout
A

Rotary handle

Direct rotary handle

Dimensions

Door cutout

B

D

(1) Without escutcheon
(2) With escutcheon

Extended rotary handle

Door cutout

Dimensions, volumes

Compact NS630b to 1600 (withdrawable version)
 Dimensions, mounting and cutouts

Dimensions

Manual control

Electrical control

(*) Widrawable position

Mounting

Bottom mounting on base plate or rails

Cutouts

Door cutout

(1) Without escutcheon
(2) With escutcheon

F : Datum

Rear panel cutout

Note.
\boldsymbol{X} and \boldsymbol{Y} are the symmetry planes for a 3-pole device.

Rotary handle

Direct rotary handle

Dimensions

Door cutout

(1) Without escutcheon
(2) With escutcheon

Note.
\boldsymbol{X} and \boldsymbol{Y} are the symmetry planes for a 3-pole device

Dimensions, volumes

Compact NS1600b to 3200 (fixed version)

Dimensions

Dimensions

Mounting on rails

Dimensions, volumes

Compact NS630b to 3200 External modules

Control-wire connections to terminal block

Only one wire per terminal.

External power-supply module (AD)

Battery module (BAT)

MN delay unit

Chassis communication module

ModBus

Digipact internal bus

External sensor for source ground return (SGR) protection

External sensor

"MGDF" summer box

Dimensions, volumes

Current-transformer for external neutral

400/1600 A (NS630b to 1600)

1000/4000 A (NS1600b to 3200)

Installation

 400/1600

1000/4000 A

Vigi rectangular sensor

280×115 mm inside dimensions

470×160 mm inside dimensions

280×115 sensor
Busbars with 70 mm pitch

Busbars	$\mathbf{I} \leqslant \mathbf{1 6 0 0} \mathbf{A}$	$\mathbf{I} \leqslant \mathbf{3 2 0 0} \mathbf{A}$
Sensor	280×115	470×160
Weight (kg)	14	18

470×160 sensor
Busbars with 115 mm pitch

Dimensions, Accessories NS630b to 3200 volumes

Escutcheon

NS630b to 1600 (fixed control)

A

C

NS630b to NS1600 (withdrawable control)

NS1600b to NS3200

A

C

Presentation 1
Functions and characteristics 11
Installation recommendations 133
Dimensions, volumes 155
Compact NS80H-MA, NSC100N and NSA160 196
Compact, Vigicompact NS100 to 630 (fixed version) 198
Compact, Vigicompact NS100 to 630 (plug-in and withdrawable versions) 200
Compact NS630b to 1600 (fixed version) 202
Bars 202
Cables with lugs and bare cables 205
Compact NS630b to 1600
(plug-in and withdrawable versions) 206
Bars 206
Cables with lugs 208
Compact NS1600b to 3200 (fixed version) 209
Electrical diagrams 211
Complementary technical information 241

Compact NS80H-MA

Compact NSC100N

Compact NSA160

Vigicompact NSC and NSA
Bottom connection

Top connection
3 poles

4 poles

4 poles

Connection dimensions

Front connection

Connectors
NS100/160/250 NS400/630

Distribution connectors (phase barriers mandatory)
NS100/160/250

Spreader

(b) Vigi module or NS250.

Dimensions (mm)

Type	G4	G5	G19	G26	G27	K1	K8	K9	K10	P13	P21
NS100/160/250N/H/L	70	140	215	30	41	35	45	159	114	$19.5(1)$	
NS400/630N/H/L	113.5	227	327	39	54	45	52.5	187.5	135	26	44

(1) P13 = 21.5 mm for $\mathrm{NS} 250 \mathrm{~N} / \mathrm{H} / \mathrm{L}$ and Vigi MH module

Plug-in base or chassis

Front connection

Rear connection

Mounting through backplate or on rails

Mounting on backplate
Right-angle extensions (mounted down and out)

Right-angle extensions (mounted down and out)

(*) short terminal shields are mandatory.

Dimensions (mm)

| Type | E | G31 | G32 | G33 | G34 | G35 | K1 | P21 | P22 | P23 | P24 | P25 | P26 | P27 | P28 | P29 | P30 | |
| :--- |
| NS100/160/250N/H/L | 4 | 108.5 | 100 | 63.5 | 110 | 80.5 | 35 | 19 | 75.5 | 67 | 49 | 57.5 | 75.5 | 67 | 26.5 | 54.5 | 36.5 | |
| NS400N/H/L | 6 | 171 | 156.5 | 104 | | 129 | 45 | 26 | 114.5 | 100 | 82 | 96.5 | 108.5 | 94 | | | | |
| NS630N/H/L | 6 | 181 | 166.5 | 104 | | 129 | 45 | 26 | 124.5 | 110 | 92 | 104.5 | 108.5 | 94 | | | | |

Compact NS630b to 1600
 (fixed version)

Bars

Horizontal rear connection

Vertical rear connection

View A detail

Front connection

Bottom terminal

[^9]Front connection with spreaders

Rear connection with spreaders

Spreader detail

Middle left or middle right spreader for 4P

Middle spreader for 3P

Left or right spreader for 4P
Left or right spreader for 3P

View A detail

Bars

Front connection with vertical-connection adapters

View A detail

Note.
(1) two mounting possibilities for vertical-connection adapters

Cables with lugs and bare cables

Front connection with vertical-connection adapters and terminal extensions for cables with lugs

View A detail

Fixed circuit breaker with 4-cable bare-cable connectors ($240 \mathrm{~mm}^{\mathbf{2}}$)

Compact NS630b to 1600
 (plug-in and withdrawable versions)

 Bars

 Bars}

Horizontal rear connection

Vertical rear connection

Front connection

[^10]Front connection with spreaders

Spreader detail

Middle left or middle right spreader for 4P

View A detail

Middle spreader for 3P

Left or right spreader for 4P

Left or right spreader for 3P

Compact NS630b to 1600
(plug-in and withdrawable versions) (cont.) Cables with lugs

Front connection with vertical-connection adapters

View A detail

Note.

\boldsymbol{X} and \boldsymbol{Y} are the symmetry planes for a 3-pole device.
Tightening torque: $\mathbf{5 0 ~ N m}$ with contact washer
\boldsymbol{X} and \boldsymbol{Y} are the symmetry planes for a 3-pole device

Compact NS1600b to 3200
 (fixed version)

Front connection (NS1600b to 2500)

Front connection with vertical-connection adapters (NS1600b to 2500)

View A detail

Front connection (NS3200)

Note.
Recommended connection screws: M10 class 8.8 Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer

View A detail
Presentation 1
Functions and characteristics 11
Installation recommendations 133
Dimensions, volumes 155
Connection 195
Compact NSC100, Compact NS80H-MA 212
Indication contacts 212
Early-make contacts 213
Compact NSA160 214
Indication contacts 214
Compact NS100 to 630 216
Indication contacts 216
Motor mechanism (automatic reset) 218
Motor mechanism (local reset) 222
Early-make contacts 224
Motor protection - Trip unit STR22/43ME 226
Compact NS630b to 1600 230
Fixed circuit breakers 230
Plug-in / withdrawable circuit breakers 232
Compact NS630b to 3200 234
Communications option 24 V DC external power supply 234
Earth-fault and earth-leakage protection zone selective interlocking 236
Fixed circuit breakers 238
Complementary technical information 241

The diagram is shown with circuits de-
energised, all devices open, connected and
charged and relays in the normal position.

With OF1 and CAO1

(1) $M N$ or $M X$ (MN: D1, D4; MX: C1, C2)

With OF1 and CAF1/CAF2

With MN

With MX

Symbols

Compact NS

trip indication contact
ON / OFF indication contact
undervoltage release
shunt release
early-break contact of rotary handle
early-make contact of rotary handle
terminal block for CAF wiring (must be ordered)
breaker for the protection of MN/MX
lamp signalling tripped position

Early-make contacts

Following tripping due to an electrical fault, reset must be carried out locally and manually.
(1) independent auxiliary source.

Remark
NS80H-MA and NSC100 circuit breakers are not plug-in or withdrawable devices. As a result, there is no automatic auxiliary connector. Connections are made directly to the device.

With MN

With MN + SD

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

With OF1

(1) $M N$ or $M X$ ($M N: D 1, D 4 ; M X: C 1, C 2)$

With MN

With MX

Compact NS100 to 630 Indication contacts

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

Compact NS100 to 250

Manually operated circuit breaker

(1) $M N$ or $M X$ (MN: D1, D4; MX: C1, C2)
(2) for the withdrawable and plug-in versions, SDV and OF2 contacts can be installed in the circuit breaker, but only one can be connected to the automatic auxiliary connectors.

Circuit breaker with motor mechanism

(1) $M N$ or $M X$ (MN: D1, D4; MX: C1, C2)
(2) for the withdrawable and plug-in versions, SDV and OF2 contacts can be installed in the circuit breaker, but only one can be connected to the automatic auxiliary connectors (3) wires supplied, must be connected to ensure correct operation.

Auxiliary wiring for plug-in / withdrawable circuit breaker

Automatic auxiliary
connectors (wires 0.75 to $2.5 \mathrm{~mm}^{2}$)

Fixed part (front view looking into base) connectors (wires 0.75 to $2.5 \mathrm{~mm}^{2}$)

Fixed part (rear view).

Fixed part
(front view looking into base)

Compact NS400 to 630

Manually operated circuit breaker

(1) MN or MX (MN: D1, D4; MX: C1, C2).
(2) for the withdrawable and plug-in versions, SDV and OF3 contacts can be installed in the circuit breaker, but only one can be connected to the automatic auxiliary connectors. (3) options available with trip unit STR53UE only.

Circuit breaker with motor mechanism

(1) $M N$ or $M X$ (MN: D1, D4; MX: C1, C2).
(2) for the withdrawable and plug-in versions, SDV and OF3 contacts can be installed in the circuit breaker, but only one can be connected to the automatic auxiliary connectors.
(3) options available with trip unit STR53UE only.
(4) wires supplied, must be connected to ensure correct operation.

Symbols

Q	Compact NS100 to 250
SD	trip indication contact
SDE	fault indication contact
SDV	earth-fault indication contact
OF	ON / OFF indication contact
MN	undervoltage release
MX	shunt release
MT	motor-mechanism module
CAO	early-break contact of rotary handle
CAF	early-make contact of rotary handle
CE	connected-position carriage switch
CD	disconnected-position carriage switch
Colour code for auxiliary wiring	
RD	red
GN	green
BK	black
VT	violet
YE	yellow
GY	grey
BL	blue
OR	orange
WH	white

Auxiliary wiring for plug-in / withdrawable circuit breaker

Automatic auxiliary
connectors (wires 0.75 to $2.5 \mathrm{~mm}^{2}$)

Fixed part(front view looking into base)

Fixed part (front view looking into base)
connectors (wires 0.75 to $2.5 \mathrm{~mm}^{2}$)

Fixed part (rear view).

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

Following tripping due to an electrical fault, reset must be carried out locally and manually.

Symbols

Compact NS100 to 630 fault indication contact motor-mechanism module breaker for protection of motor-mechanism module circuits lamp signalling an electrical fault
lamp signalling motor mechanism in manual position closing order opening order (must be > 150 ms)

Colour code for auxiliary wiring

RD red
GN green
BK black
BL blue
OR orange
WH white

Automatic reset with MN

(1) wires supplied, must be connected to ensure correct operation.
(2) the tripping order must lock out the closing order.

Automatic reset with MX

(1) wires supplied, must be connected to ensure correct operation. (2) the tripping order must lock out the closing order

Automatic reset without auxiliary

(1) wires supplied, must be connected to ensure correct operation.

Control via switch or relay

With MN/MX
Controlled by switch

Without auxiliary
Controlled by switch

Controlled by relay

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

Following tripping due to an electrical fault, reset must be carried out locally and manually.
(1) wires supplied, must be connected to ensure correct operation.
(2) connect SDE terminal 81 to auxiliary-connector terminal 84. (3) the tripping order must lock out the closing order.

Symbols

[^11]Remote reset without auxiliary

(1) wires supplied, must be connected to ensure correct operation.
(2) connect SDE terminal 81 to auxiliary-connector terminal 84.

Control via switch or relay

With MN/MX
Controlled by switch

Controlled by relay

Without auxiliary
Controlled by switch

Controlled by relay

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

Following tripping due to an electrical fault, reset must be carried out locally and manually.
(1)
fault.

Symbols

Q Compact NS100 to 630
SDE fault indication contact
MN undervoltage release
MX
MT
motor-mechanism module
F1 breaker for protection of motor-mechanism module circuits and $M N / M X$
H1 lamp signalling an electrical fault
H2 lamp signalling motor mechanism in manual position F closing order orders
opening order \quad must not has priority over F order)

Colour code for auxiliary wiring

N green
BK black
BL blue
OR orange
WH white

Local reset with MN

Local reset with MX

Local reset without auxiliary

(1) (2) required to ensure correct indication of an electrical

 fault.
Control via switch or relay

With MN/MX

Without auxiliary

Controlled by switch

Controlled by relay

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

Following tripping due to an electrical fault, reset must be carried out locally and manually.

With MN
受

(1) independent auxiliary source

Symbols

With MN + SD

(1) independent auxiliary source

The diagram is shown with circuits de-
energised, all devices open, connected and
charged and relays in the normal position.

Thermal-fault indication

Symbols

Q Compact NS100 to 630
breaker for protection of the auxiliary circuit
SDTAM
BP1 SDTAM reset button thermal-fault early-break signal

KA1 auxiliary relay - Telemecanique
CA...DN31 or CA...DN22
H1 lamp signalling SDTAM fault
Colour code for auxiliary wiring
BL
blue
white

Automatic operation

$t r$
overloa
IQ
overload (long-time) protection tripping time
Legend current greater than Ir (long-time tripping threshold) closing order for circuit breaker Q

O: OFF (circuit open)
Note.

- I: ON (circuit closed)

For a short-circuit or earth fault, only circuit breaker Q opens.
The above automatic control sequence is not run.

The diagram is shown with circuits de-
energised, all devices open, connected and
charged and relays in the normal position.

Thermal-fault indication and tripping

(1) KM1 operating conditions must be inserted between 22 and A1.

Symbols
Q
F1

KA1 auxiliary relay - Telemecanique CA...DN31 or CA...DN22
KA2 mechanical latching unit Telemecanique LA6 DK1
RHK bistable relay - Telemecanique RHK-41
H1 lamp signalling SDTAM fault
KM1 power contactor
Colour code for auxiliary wiring
BL blue
WH white

Automatic operation

tr overload (long-time) protection tripping time
overload current greater than Ir (long-time tripping threshold)
Note.
For a short-circuit or earth fault, only circuit breaker Q opens. The above automatic control sequence is not run.

Legend

- O: OFF (circuit open)
- I: ON (circuit closed)
- : either ON or OFF

Same automatic system using a bistable relay

[^12] 12 and A1.

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

- (basic)	A	Control unit
\square	\square \square \square \square \square \square	E1-E6 communication Z1-Z5 zone selective interlocking: Z1 = ZSI OUT SOURCE Z2 = ZSI OUT; Z3 ZSI IN SOURCE Z4 = ZSI IN ST (short time) Z5 = ZSI IN GF (earth fault) M1 = Vigi module input (Micrologic 7) T1, T2, T3, T4 = external neutral; M2, M3 = Vigi module input (Micrologic 7) F2+, F1- external 24 V DC power supply

-: basic Micrologic control unit
A: digital ammeter

Remote operation

Remote operation

MN : undervoltage release
or
MX : shunt release
Remote-operating mechanism (*)
A4 : electrical opening order
A2 : electrical closing order
B4, A1 : power supply for control devices and gear motor
(*) Spring-charging motor 440/480 V AC

Terminal-block marking (manual operation)

Indication contacts

OF3/OF2/OF1 : indication contacts
SDE : fault-trip indication contact (short-circuit, overload, earth fault)

SD : trip indication contact (manual operation)

CAF2/CAF1

CAO2/CAO1 : early-break contact (rotary handle)

Terminal-block marking (with motor mechanism)

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

Power

Terminal-block marking Com UC1 UC2 UC3

\circ	\circ				
E3	E4	Z3	Z4	T3	T4

- (basic)	A		Control unit
■	\square	Com:	E1-E6 communication
	\square	UC1 : UC2 :	Z1-Z5 zone selective interlocking: Z1 = ZSI OUT SOURCE Z2 = ZSI OUT; Z3 ZSI IN SOURCE Z4 = ZSI IN ST (short time) Z5 = ZSI IN GF (earth fault) M1 = Vigi module input (Micrologic 7) T1, T2, T3, T4 = external neutral; M2, M3 = Vigi module input (Micrologic 7)
	\square	UC3 :	F2+, F1- external 24 V DC power supply

[^13]
Control unit

Remote operation

Remote operation
MN : undervoltage release
or

MX : shunt release
Remote-operating mechanism (*)
MT2 : A4: electrical opening order
MT1 : A2 : electrical closing order
B4, A1 : power supply for control devices and gear motor (MCH)
(*) Spring-charging motor 440/480 V AC
(380 V motor + additional resistor)

Compact NS630b to 3200
 Communications option 24 V DC external power supply

Connection of the communications option

None of the control-unit protection functions require an auxiliary source. However, the 24 V DC external power supply (AD module) is required for certain operating configurations as indicated in the table below.

Circuit breaker	Closed	Open
Communications option	no	no
Fonction protection	no	no
Display function	no ${ }^{(1)}$	yes
Circuit-breaker status indications and control communications bus	no	no

(1) except if current < 20\% In

Examples using the COM communications option

Switchboard display unit

This architecture provides remote display of the variables managed by Micrologic control units equipped with the Eco COM ModBus module. - I (Micrologic A)

No programming is required.

Communicating switchboard

This configuration provides remote display and control of Compact devices equipped with the ModBus or Digipact COM module. The Digipact bus can be combined with the ModBus bus.

External sensor (CT) for residual earth-fault protection

Connection of current-transformer secondary

circuit for external neutral

Compact equipped with a Micrologic 6 A:
■ shielded cable with 2 twisted pairs
■ SG1 twisted with SG2

- X1 twisted with X2

■ shielding connected to GND on one end only

- maximum length 5 metres
- cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$
- recommended cable: Belden 9552 or equivalent.
f supply is via the bottom, control and power wiring is identical (H 1 connected to the source side, H 2 to the load side).
For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary.

External transformer for source ground return (SGR) earth-fault protection

Connection of the secondary circuit
Compact equipped with a Micrologic 6 A:

- unshielded cable with 1 twisted pair
- maximum length 150 metres

■ cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$

- recommended cable: Belden 9409 or equivalent.

Earth-leakage protection

Connection of the rectangular-sensor secondary

circuit
Compact equipped with a Micrologic 7 A:

- unshielded cable with 3 twisted conductors:
- M1, M2, M3 twisted together
- maximum length 4 metres
cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$
- recommended cable: Belden 9493 or equivalent.

Zone selective interlocking

Note. The maximum permissible distance between two devices is 3000 metres and the maximum number of devices is 100 .

A pilot wire interconnects a number of circuit breakers equipped with Micrologic A control units, as illustrated in the diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, whatever the tripping-delay setting.
Fault 1.
Only circuit breaker A detects the fault. Because it receives no signal from downstream, it immediately opens in spite of its tripping delay set to 0.3

Fault 2

Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set to 0.3 . Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in the normal position.

- (basic)	A	Control unit
\square	\square	E1-E6 communication
	-	Z1-Z5 zone selective interlocking: Z1 = ZSI OUT SOURCE Z2 = ZSI OUT ; Z3 = ZSI IN SOURCE Z4 = ZSI IN ST (short time) Z5 = ZSI IN GF (earth fault) M1 = Vigi module input (Micrologic 7) T1, T2, T3, T4 = external neutral; M2, M3 = Vigi module input (Micrologic 7)
	-	F2+, F1- external 24 V DC power supply

[^14]
Remote operation

Remote operation

MN	$:$	undervoltage release
or		
MX	$:$	shunt release

Indication contacts

Terminal-block marking

\otimes	81
\otimes	82
\otimes	84
SDE	

Indication contacts

OF3/OF2/OF1: ON / OFF indication contacts
SDE : fault-trip indication contact
(short-circuit, overload, earth fault)
SD : trip indication contact
Presentation 1
Functions and characteristics 11
Installation recommendations 133
Dimensions, volumes 155
Connection 195
Electrical diagrams 211
Tripping curves 242
Compact NSC100 242
Compact NS80H-MA 243
Compact NSA160 244
Compact NB100 to 600 245
Compact NS100 to 250 protection of distribution systems 246
Compact NS100 to 250 motor-starter protection 249
Compact NS400 to 630 protection of distribution systems 250
Compact NS400 to 630 motor-starter protection 251
Compact NS630b to 3200 252
Reflex tripping 253
Current-limiting curves 254

Complementary technical information

Tripping curves
Compact NSC100

Compact NS100 to 630 devices
incorporate the exclusive reflex-tripping system.
This system breaks very high fault currents by mechanically tripping the device via a "piston" actuated directly by the pressure produced in the breaking units resulting from a short-circuit.
For high short-circuits, this system provides a faster break and a trip guarantee, as well as natural total discrimination.
Reflex-tripping curves are exclusively a function of the circuit-breaker rating.
16... 40 A

100 A

Compact NS80H-MA

MA1.5...MA80

Complementary technical information

Tripping curves
Compact NSA160

50... 80 A

100 A

125... 160 A

Compact NB100 to 600

NB100-50... 100 A

Complementary technical information

Tripping curves
Compact NS100 to 250
Protection of distribution systems

TM magnetic trip units

TM32D / TM40D / TM40G

TM50D / TM63D / TM63G

TM magnetic trip units (cont.)

TM200D / TM250D

Complementary technical information

Tripping curves
Compact NS100 to 250
Protection of distribution systems (cont.)

STR22SE and STR22GE electronic trip units

STR22SE - 40... 100 A

STR22SE-160... 250 A

STR22GE-160...250 A

Compact NS100 to 250 Motor-starter protection

MA magnetic trip units

MA2,5...MA100

STR22ME electronic trip units

STR22ME - 10... 220 A

Complementary technical information

Tripping curves
Compact NS400 to 630
Protection of distribution systems

STR23 and STR53 electronic trip units

STR23SE / STR23SV

Options for STR53UE
Earth-fault protection

Compact NS400 to 630 Motor-starter protection

MA magnetic and STR43ME electronic trip units

STR43ME - 120 to 500 A - class 10 A

STR43ME - 120 to 500 A - class 20

Complementary technical information

Tripping curves
Compact NS630b to 3200

Micrologic electronic control units

Micrologic 2.0

Micrologic 5.0, 6.0, 7.0 - Micrologic 5.0A, 6.0A, 7.0A

Options for Micrologic electronic control units

Earth-fault protection (Micrologic 6.0)

Reflex tripping

The limiting capacity of a circuit breaker is its aptitude to limit short-circuit currents.

The exceptional limiting capacity of the Compact NS range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wave front).

Ics = 100\% Icu

The exceptional limiting capacity of the Compact NS range greatly reduces the forces created by fault currents in devices.
The result is a major increase in breaking performance. In particular, the service breaking capacity Ics is equal to 100% of Icu.
The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following operations:
■ break three times consecutively a fault current equal to 100% of Icu

- check that the device continues to function normally:
\square it conducts the rated current without abnor mal temperature rise
\square protection functions perform within the limits specified by the standard \square suitability for isolation is not impaired.

Longer service life of electrical installations

Current-limiting circuit breakers greatly reduce the negative effects of short-circuits on installations.

Thermal effects

Less temperature rise in conductors, therefore longer service life for cables.

Mechanical effects

Reduced electrodynamic forces, therefore less risk of electrical contacts or bus bars being deformed or broken.

Electromagnetic effects

Less disturbances for measuring devices located near electrical circuits.

Economy by means of cascading

Cascading is a technique directly derived from current limiting. Circuit breakers with breaking capacities less than the prospective short-circuit current may be installed downstream of a limiting circuit breaker. The breaking capacity is reinforced by the limiting capacity of the upstream device.
It follows that substantial savings can be made on downstream equipment and enclosures.

Current-limiting curves

The current-limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):
\square the actual peak current (limited current),
\square thermal stress $\left(A^{2} s\right)$, i.e. the energy dissipated by the short-circuit in a conductor with a resistance of 1Ω.

Example

What is the real value of a 150 kA rms prospective short-circuit (i.e. 330 kA peak) limited by an NS250L upstream?
Answer: 30 kA peak (see next page).

Maximum permissible cable stresses

The table below indicates the maximum permissible thermal stresses for cables depending on their insulation, conductor (Cu or Al) and their cross-sectional area (CSA). CSA values are given in mm^{2} and thermal stresses in $A^{2} \mathrm{~s}$.

CSA (mm ${ }^{2}$)		1.5	2.5	4	6	10
PVC	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{Al} \end{aligned}$	2.9710^{4}	8.2610^{4}	2.1210^{5}	4.7610^{5}	$\begin{array}{r} 1.3210^{6} \\ 5.4110^{5} \end{array}$
PRC	$\begin{aligned} & \hline \mathrm{Cu} \\ & \mathrm{Al} \end{aligned}$	4.1010^{4}	1.3910^{5}	2.9210^{5}	6.5610^{5}	$\begin{aligned} & \hline 1.8210^{6} \\ & 7.5210^{5} \end{aligned}$
CSA (mm^{2})		16	25	35	50	
PVC	Cu	3.410^{6}	8.2610^{6}	1.6210^{7}	3.3110^{7}	
	AI	1.3910^{6}	3.3810^{6}	6.6410^{6}	1.3510^{7}	
PRC	Cu	4.6910^{6}	1.3910^{\prime}	2.2310^{\prime}	4.5610^{\prime}	
	AI	1.9310^{6}	4.7010^{6}	9.2310^{6}	1.8810^{7}	

Example
Is a Cu/PVC cable with a CSA of $10 \mathrm{~mm}^{2}$ adequately protected by an NS160N? The table above indicates that the permissible stress is $1.3210^{6} \mathrm{~A}^{2} \mathrm{~s}$.
All short-circuit currents at the point where an NS160N (Icu = 35 kA) is installed are limited with a thermal stress less than $6 \times 10^{5} \mathrm{~A}^{2}$ s (see next page).
Cable protection is therefore ensured up to the limit of the breaking capacity of the circuit breaker.

Current-limiting curves

Voltage 380/415 V AC

Voltage 660/690 V AC

Thermal-stress curves

Voltage 380/415 V AC

Voltage $660 / 690$ V AC

Presentation1
Functions and characteristics 11
Installation recommandations 133
Dimensions, volumes 155
Connection 195
Electrical diagrams 211
Complementary technical information 241
NSA80H-MA 258
NSC100N 260
NS100/160/250N/H 1P/2P 262
NS100/160/250N complete device fixed/FC 264
NS100/160/250H complete device fixed/FC 266
NS100/160/250L complete device fixed/FC 267
NS100/160/250N/H/L device based 268
on separate components fixed/FC
Installation and connection 269
Accessories 270
NS400/630 complete device fixed/FC 275
NS400/630 device based on separate components 277
fixed/FC
Installation and connection 278
Accessories 280
NB50/100 284
NB250N 286
NB400N/NB600N 288
NSA125/160 complete device fixed/FC 290
Accessories 291
NS125E 292
NS100/400 294
NS630b to NS1600 fixed manually operated 299
NS630b to NS1600 fixed electrically operated 301
Accessories for NS630b to NS1600 fixed devices 302
NS630b to NS1600 manually operated 304withdrawable devicesNS630b to NS1600 electrically operated305
withdrawable devices
Accessories for NS630b to NS1600 306 withdrawable devices
Common accessories for NS630b to NS1600 308
withdrawable devices
NS1600b to NS3200 fixed, front-connected, 310
manually operated device
Accessories for NS1600b to NS3200 311

[^0]: 1 Breaking unit
 2 Trip units or control units
 3 Vigi earth-fault protection module
 4 Insulation monitoring module
 5 Voltage presence indicator
 6 Ammeter module
 $7 M N$ and $M X$ voltage releases
 8 Multifunction auxiliary contact
 9 Direct rotary handle
 10 Extended rotary handle
 11 Motor mechanism
 12 Plug-in base
 13 Connection of auxiliary circuits to plug-in base or withdrawable chassis
 14 Connection accessories
 15 Short terminal shields
 16 Long terminal shields

[^1]: Note.
 Micrologic A control units come with a transparent lead-seal cover as standard

[^2]: Spare battery
 A battery supplies power to the LEDs identifying the tripping causes. Battery service life is approximately ten years.
 A test button on the front of the control unit is used to check the battery condition.
 The battery may be replaced on site when discharged.

[^3]: Vigicompact NSC100N

[^4]: Source-changeover system (see section on source-changeover systems)

[^5]: Identification accessories

[^6]: Note.
 Compact circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors, requiring no particular treatment.

[^7]: 1 module de communication "appareil"
 2 bus de communication Digipact
 3 capteurs "appareil" OF, SD, SDE

[^8]: (1) Tightening torque for spreaders or terminal extensions on the circuit breaker

[^9]: Note.
 Recommended connection screws: M10 class 8.8 Tightening torque: $\mathbf{5 0} \mathbf{~ N m}$ with contact washer

[^10]: Note.
 Recommended connection screws: M10 class 8.8 Tightening torque: 50 Nm with contact washer

[^11]: Q
 SDE
 mact NS100 to 630
 SDE fault indication contact
 MN undervoltage release
 MX shunt release
 MT motor-mechanism module
 F1 breaker for protection of motor-mechanism module circuits and $M N / M X$
 H2 lamp signalling motor mechanism in manual position reset order
 (must be > 150 ms
 F
 closing order
 O
 opening order
 must be > 150 ms has priority over F order)
 Colour code for auxiliary wiring
 $\begin{array}{ll}\text { GN } & \text { green } \\ \text { BK } & \text { black } \\ \text { BL } & \text { blue } \\ \text { OR } & \text { orange }\end{array}$
 WH white

[^12]: (1) KM1 operating conditions must be inserted between

[^13]: -: basic Micrologic control unit
 A: digital ammeter

[^14]: : basic Micrologic control unit
 A: digital ammeter

